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Abstract

Novel techniques for multi-bit oversampled data conversion are described. State-of-the-art oversam-
pled data converters are analyzed, leading to the conclusion that their performance is limited mainly
by low-resolution signal representation. To increase the resolution, high-performance, high-resolution
internal D/A cornverters are required. Unit-element mismatch-shaping D/A converters are analyzed, and
the concept of mismatch-shaping is generalized to include scaled-element D/A converters. Several types
of scaled-element mismatch-shaping D/A converters are proposed. Simulations show that, when imple-
mented in a standard CM OS technology, they can be designed to yield 100 dB performance at 10 times

oversampling.

The proposed scal ed-element mismatch-shaping D/A converters are well suited for use as the feedback
stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential,
because that requires a high-resolution loop quantizer which introduces only asmall delay. Generally, it
is not acceptable to design the loop quantizer as a high-resolution flash quantizer because they require a
large chip area and high power consumption. Pipeline techniques are proposed to circumvent this prob-
lem. Thisway, the delta-sigma quantizer’s feedback signal is obtained by a multiple-stage quantization,
where the loop quantizer (low-resolution and minimum-delay) implements only the last-stage quanti-
zation. Hence, high-speed, high-resolution delta-sigma quantization is feasible without using complex

circuitry.

Animproved version of the MASH topology is aso proposed. A delta-sigma quantizer is used to quan-

tize theinput signal into an oversampled digital representation of low-to-moderate resolution. The delta-



sigmaquantizer’s truncation error is estimated either directly, or asthe first-order difference of the output
signal from the loop filter's first integrator stage. This technique avoids the need for accurate matching
of analog and digital filters that characterizes the MASH topology, and it preserves the signal-band
suppression of quantization errors. Simulations show that quantizers of this type can yield 100 dB per-
formance at 10 times oversampling. There are no requirements for high-resolution flash quantizers or

other hard-to-implement circuitry.
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Chapter 1

| ntroduction

Modern society relies on signal processing. It isapplied in communication equipment, medical devices,
automated production facilities, computers, weapons, navigation equipment, tools and toys, etc.. Most
human-designed signal processing is performed by electronic circuits, and the range of applications is

broadened as these circuits are perfected and their costs reduced.

The mgjority of the signals of interest are found in the world that surrounds us, whether it relates to
monitoring a heart or guiding a missile. The first step performed by a signal-processing system is to
convert a considered signal into a form that can be processed by an electronic circuit. Sometimes a
dedicated electro-mechanical system (called a sensor) will be required to sense the signal and convert
it into avoltage, charge, or current signal, and sometimes the signal is readily available in one of these
forms. An eectronic circuit will then process the electric signal in a specified way, and the outcome
will often be applied to a nonelectronic task, such as displaying an image of the heart, or adjusting the

missile’s direction of flight.

The signal processing that needs to be performed can vary from very simple operations (e.g., amplifica
tion) to extremely complex ones involving computation of several parameters, such as standard devia-
tion, spectral composition, correlation coefficients, etc.. A fundamental property of analog electric signa

processing isthat each operation will be associated with adegradation of the signal-to-noise ratio (SNR).



2 CHAPTER 1. INTRODUCTION

Hence, if substantial analog signa processing (ASP) is performed, stochastic artifacts (noise) will ac-
cumulate, and the resulting signal may not represent the desired signal with the required significance.
Furthermore, the accuracy of ASP isinherently limited; the linearity of supposedly linear operations is

not ideal, multiplication of signals is poorly implemented, etc..

A wide range of applications require substantial amounts of highly accurate signal processing. High-
accuracy electronic signal processing can generally be implemented only when the signals are repre-
sented in digital form. In digital form, signals can be processed with arbitrary resolution and accuracy
and without noticeably degrading the SNR. However, many thousands of transistors are required to im-
plement a circuit that performs only simple digital signal processing (DSP). Hence, the feasibility of

DSPismainly a matter of circuit density and power consumption.

Thanks to CMOS integrated circuit technology, DSP has experienced explosive growth during the last
couple of decades. CMOS technology has become widely available and it is characterized by an out-
standing cost-to-performance ratio which is improved steadily (Moore's Law). CMOS technology’s
many advantages include its low cost, high speed, high circuit density', low power consumption per
operation, and the availability of software for the semi-automated design of DSP circuits. The cost and
efficiency of CMOS-based DSP is actually so competitive that it is often used for the implementation
of even simple signal processing systems where ASP could potentially be used instead. The fields that
remain dominated by ASP include high-frequency (radio) signal processing and applications that are

characterized by low resolution and a high degree of parallelism (for example, finger-print sensors).

Data converters are the missing link needed for the implementation of a DSP-based electronic circuit.
Although digital signals can be processed with arbitrary resolution and accuracy, the system’s overall
performance cannot exceed the resolution or accuracy by which the considered analog signals can be
converted into digital form (A/D conversion), or by which the processed digital signal can be recon-
verted into analog form (D/A conversion). Obviously, data conversion is not a new discipline in circuit
design, but huge industrial investments are till being made, and there is a tremendous research activity
continuing in this technical field. This clearly shows that there is a great demand for CMOS-based data

converters that combine high speed, high resolution, and low cost.

1Several hundred million transistors can be employed in the same circuit.
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1.1 TheClassof Data Converters Considered

This work focuses almost exclusively on delta-sigma modulation as the chosen technique for A/D and
D/A conversion. Delta-sigma (AX) converters have gained popularity during the last decade because
they trade an increased requirement for DSP for a relaxed requirement for high-performance analog
circuit blocks. Single-bit A converters have usually been preferred because they avoid the requirement

for accurately matched electrical parameters that characterize most other high-resolution data converters.

Delta-SigmaModulation. Any signal isuniquely characterized by its spectral composition. Thiswork
is dedicated to the large range of applications that characterize signals by their spectral compasition in
only a selected frequency band (the signal band). Nyquist’s sampling theorem states that the maximum
bandwidth that can be represented by a uniformly-sampled digital signal is half the signal’s sampling
frequency (the Nyquist bandwidth), in which case there is a one-to-one correspondence between the
signal’s spectral composition and the value of its samples. However, if the signal is oversampled, i.e.,
if it is characterized by its spectral composition in a signal band which is narrower than the Nyquist
bandwidth, then the value of each sample is not uniquely defined, and the flexibility can be used (for
example) to truncate the signal’s samples to values from afinite set of selected values. More precisely,
there is a tradeoff between the signal’s oversampling ratic? (OSR) and the tolerance allowed in each
sample's value. The samples’ truncation errors must be correlated to preserve the signal-band spectral
composition, and the process somewhat resembles interpolation. The tradeoff between resolution and
bandwidth is considered good. For example, the same signal can be represented by truncation to 65,536
uniformly-spaced values using only negligible oversampling, or by truncation to only 2 values using 32

times oversampling®.

2Two signals are considered to be equivalent if their spectral composition in the signal band isidentical (or if the difference
is smaller than a chosen threshold, say -100 dB full scale). The flexibility reflects that spectral variations outside the signal

band are allowed.
3The Nyquist bandwidith divided by the signal’s bandwidth.
4The minimum required oversampling ratio expressed as a function of the signal and the selected set of truncation levels

is not known, but would probably be of little practical interest. The numbers provided herein characterize circuits that can

perform the discussed translation from one representation to another.
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In essence, AY. modulators are circuits that can trandate a signal between representations of different

resolutions and sampling rates.

Single-Bit Delta-Sigma Converters. Single-bit (two-level) signal representation is useful because it
facilitates linear A/D and D/A conversion without relying on accurate matching of electrical parame-
ters [1]. Thisis why the technique has become popular. Although signals can be AY modulated into
a two-level representation using only 32 times oversampling, there are several practical reasons why
this is rarely done. Usually, oversampling ratios in the order of 128 are used, which, unfortunately,
considerably constrains the system’s bandwidth because the maximum sampling frequency cannot be
increased arbitrarily. Single-bit AY converters have, therefore, been used mainly for audio and other

high-performance applications which have afairly low bandwidth.

Multi-Bit Delta-Sigma Converters. A AY dataconverter's linearity is constrained by the linearity of
aD/A converter employed internally. The inherent linearity of time-invariant single-bit D/A converters

(DACs) isthe key to single-bit AY converters superb linearity.

Multi-bit AY converters can operate at asubstantially lower OSR than their single-bit counterparts, even
if the signal is represented by only afew bits of resolution [2]. They are, therefore, more suitable for
wide-bandwidth data conversion, which is required by a wide range of applications. Unfortunately, a
DAC'sfull-scale linearity isessentially independent of its resolution (except for single-bit DACSs), hence
AY modulation does not directly offer any advantages for non-single-bit data converters. However, it
is indeed simpler to calibrate a low-resolution DAC than it is to calibrate a high-resolution one, and

multi-bit AX: modulation has successfully been used for calibrated systems|[1, 3,4].

The introduction of mismatch-shaping DACs marked a major breakthrough in multi-bit AX: data conver-
sion. The fundamental principle employed by these DACsis that they are allowed to produce inaccurate
analog output values, as long as they interpolate between the errors and the output signal’s signal-band

spectral composition remains intact. This operation isvery similar to AY. modulation.

The basic requirement for mismatch-shaping DACs is that they must be able to interpolate between the

mismatch errors without knowing the actual value of each error. This operation can, for example, be ob-
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tained when using adigital state machine to control aunit-element DAC [1,2,5-18]. The complexity of
unit-element mismatch-shaping DACs increases considerably with their resolution, hence the technique
is suitable only for DACs with a resolution of up to (say) 6 bits. In other words, a AY. modulator is
required to reduce the signal’s resolution to alevel where a mismatch-shaping DAC can be implemented

using only circuitry of reasonable complexity.

High-Resolution Mismatch-Shaping Data Converters. Through the development of digital state ma-
chines that can implement scaled-element DACS with mismatch shaping, this work extends the possi-
bilities for high-resolution data conversion. The circuit complexity of the proposed state machines is
low, and the mismatch-shaping DACSs' resolution can be made arbitrarily high. Because the signa is
not interpolated to a low-resolution representation, large spectral components outside the signal band
(representing the truncation error) will not occur, and the specifications of the filters that are normally
required to remove such spectral components can, therefore, be relaxed considerably. Hence, the pro-
posed techniques facilitate the implementation of high-speed D/A converters that are characterized by
an unpreceded simplicity and level of performance (100 dB performance at 10 times oversampling is

feasible using an inexpensive standard CMOS technology with no post-production calibration).

The proposed mismatch-shaping DACs need not cause substantial delay, hence they are well suited for
use in multi-bit A> A/D converters. Usually, the D/A converter employed internally in A> A/D con-
verters has been the limiting factor for the overall performance, but when a scaled-element mismatch-
shaping DAC is used for this purpose, the performance can be improved to the level where it is only
the complexity of the internal loop quantizer that will limit the performance. This work also proposes
techniques that solve this complexity problem. Using the proposed techniques, the achievable perfor-
mance reaches alevel where only device noise, clock jitter, and other unavoidable effects will constrain

the performance.

SUnit-element DACs generate the analog output signal by adding analog sources of the same nominal value.
6Scaled-element DACs generate the analog output signal by adding analog sources of scaled nominal values. Binary-

weighted DACs (for which the analog sources are proportiona to 1,2,4,8,...) are an example which illustrates that the
resolution of scaled-element DACs can be vastly higher than the resolution of unit-element DACs based on the same number

of analog sources.
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1.2 TheStructureof ThisThesis

Following this Introduction, Chapter 2 begins by defining the class of signals considered and the main
mathematical tool used to characterize and analyze them (the Fourier transform). Methods for estimating
a signa’s spectra composition are also discussed. The chapter includes only material that should be

common knowledge for al trained electrical engineers, so it may be considered as optional reading.

Chapter 3 is a discussion of the basic aspects of data conversion. It discusses the basic steps and the
topologies in which most A/D and D/A converters are implemented (but it is not comprehensive). It
provides several definitions, and it points out some of the many effects that are likely to limit a data

converter’s performance. The reader is advised to be familiar with this material.

Chapter 4 is an overview of state-of-the-art AY. quantizers, and it includes a thorough discussion of
mismatch-shaping unit-element DACSs. It outlines the advantages of multi-bit AY modulation, and it
points out the drawbacks of the so-called MASH quantizers. It also includes an evaluation of the best-
case noise performance, which ultimately will limit the overall performance. Even the reader with good

insight in A data conversion is advised to read this chapter carefully.

Chapters 5, 6, 7, 8, and 9 constitute the main part of thiswork, and at least 90% of the material contained

in them is believed to be novel.

Chapter 5 is adiscussion of how dynamic errors can be avoided in current-mode DACs. Current-mode
DACs are important because they facilitate the implementation of data converters with avery low noise

floor (discussed in Chapter 4).

Chapter 6 is a discussion of idle tones in mismatch-shaping DACs. Idle tones are a very unpleasant
(and hence important) phenomenon which has received little attention in the open literature. Severa

techniques to prevent idle tones are proposed.

Chapter 7 isadiscussion of the design of scal ed-element mismatch-shaping DACs and possibly the most

important part of this thesis. Several techniques are proposed.

Chapter 8isadiscussion of what is required to make full use of the proposed scal ed-element mismatch-
shaping DACs when they are used for the implementation of high-resolution A quantizers. Pipeline
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techniques are proposed as away to avoid the need for high-resolution flash quantizers.

Chapter 9 takes a different approach for the design of high-performance A quantizers. The technique
is based on a multiple-stage quantization, which somewhat resembles MASH-topology AY. quantizers.
The major advantage of the proposed technique (as opposed to MASH quantizers) is that it does not
rely on accurate matching of analog and digital filters, therefore, high-performance low-complexity

guantizers can be implemented robustly.

1.3 Intellectual Property Rights

This serves as a public notice that several U.S. and international patents are pending for substantial
parts of this work. The reader is advised to contact the author (Steensgaard@ieee.org) for licensing

information before employing the discussed techniques in commercial products.
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Chapter 2

Characterization of Signals

This chapter will define the class of signals that are relevant for this work. The properties of analog and
digital signals are discussed, and an important distinction between continuous-time and discrete-time

signalsis made.

Although the considered signals are defined as functions of atime index, they are often better analyzed
in the frequency domain. A mathematical tool, the Fourier Transformation, is used as the fundamental
link between the time domain and the frequency domain. As this technique is assumed to be common
knowledge for al properly-trained electrical engineers, the main results will merely be summarized.
Unfortunately, the process of estimating a signal’s spectral composition on the basis of its time-domain
representation in afinite-duration period of timeis not always well understood. Because thiswork makes

extensive use of such estimates, this process and its tradeoffs will be discussed in some detail.

2.1 Time-Domain Representation of Signals

A signal’s properties can be described in many ways — too many to be discussed in this context. In this

thesis, signals are assumed to be defined by their relation to the time variable.
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2.1.1 Analog Signals

An analog signal shall mean a physical phenomenon described by a single-variable measure, which isa

continuous function of time.

A typical example of an analog signal isthe electrostatic potential (voltage) at aspecified location relative
to aselected reference location (ground). Another typical exampleis current, which is defined asthefirst
derivative of the charge passing through a specified oriented surfacé. Analog signals can, in principle,

be measures of amost anything: angle, velocity, acceleration, temperature, energy, reflection, weight,
resistance, capacitance, inductance, etc.. However, notice that because it can be described only by at
least three parameters, color is not considered to be an analog signal; whereas, the light intensity at a

specified wave length is an analog signal.

Analog signals will (as usual) be characterized by the measure, rather than by the physical phenomenon
that the measure evaluates. Thus, analog signals are simply continuous mathematical functions of a
variable called time. The provided circuit examples will, however, use voltage, current, and charge as

examples of analog signals.

Continuous-Time Analog Signals. A continuous-time analog signal isan analog signal that is defined

and evaluated with respect to a continuum of time values.

Discrete-Time Analog Signals. Although all analog signals, or at least the described physical phe-
nomena, are defined for a continuum of time values; some analog signals are evaluated only at discrete
timeinstances. Such analog signals are called discrete-time signals. Notice that whether an analog signal
should be characterized as a continuous-time or a discrete-time signal depends only on the application

to which the signal is applied, hence it is not a property that can be extracted from the signal itself.

IStrictly speaking, in the classical description of charge being discretely distributed in space, current is not an analog signal
according to the above definition (as current would be a sequence of impulses, and hence not a continuous function of time).

However, as this thesis addresses macroscopic problems, such inconsistencies will be allowed without further notice.
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Although not fully comprehensive, thisthesiswill only consider discrete-time signals that are uniformly-
sampled. More precisely, a discrete-time analog signal «;(k) is in this thesis defined by an analog
signal’s a.(t),t € R, values at discrete time instances, which are equidistantly spaced by a chosen

constant time unit 7. Thus, a discrete-time analog signal can be described as
aq(k) = ac(kTy), keZ={. ,-3,-2-1,01,2,3, ...} (2.1)

The chosen time unit Ty is called the sampling period, and the reciprocal of the sampling period is called
the sampling frequency f; = 1/T5.

Switched-capacitor (SC) circuits are atypical example of circuits that evaluate analog signals in discrete
time. SC circuits consist of one or more cells designed to settle towards a stable and well-defined
equilibrium. By evaluating the signals only at time instances when the cells have settled to values very

close to their equilibria, the signal processing provided by these circuits can be made accuraté.

2.1.2 Digital Signals

This thesis will only consider a subset of the large class of signals that generally are considered to be

digital signals. In the following, adigital signal shall mean a member of this subset.

Digital signals are always discrete-time signals, and their characteristics are, from a mathematical point
of view, equivalent to those of discrete-time analog signals. The difference between a digital and a
discrete-time-analog signal is that a digital signal is a sequence of numbers, whereas a discrete-time-
analog signal is a sequence of samples/evaluations of some physical phenomenon. In other words, a
digital signa d(k) is simply a sequence of numeric values that are a function of an integer variable %,

which is considered to represent a sequence of equidistant time valuest = k75

In a physical system, adigital signal will be represented by a set of one or more analog signals (often
called bits or bit signals) that, when evaluated jointly at ¢t = kT, are considered to represent one of

a finite number of possible states (called codes), each of which are considered to represent a numeric

%In this way, the performance of SC circuits can be made insensitive to nonlinear settling effects etc. , which can cause

substantial errorsin circuits operating on continuous-time signals.
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value. A fundamental property of all digital systems isthat each codeis easily distinguishable from the
other possible codes, hence the correct numeric value will be represented/detected even if the bit signals
are subject to a considerable amount of noise. The noise margin is defined as the level of noise which
can be tolerated at a given (very high) stochastic significance level of the representation of the codes.
Usually, each bit signal is considered to represent one of only two possible states, high (1) or low (0),
therefore the noise margin is typically very good. Using this practice, a collection of N bit signals can
represent up to 2V different codes. If P evaluations of the individual bit signals are used to represent
each code (serial datarepresentation), then NV bit signals can represent asmany as 2¥ 7 different codes.

Using a sufficient number of bit signals/evaluations, digital signals with arbitrary high dynamic range

can easily (and robustly) be represented in adigital system.

2.2 Frequency-Domain Representation of Signals

As an dternative to the time-domain representation, continuous-time as well as discrete-time signals
can be described in the frequency domain. The two representations are complementary because some
of a signal’s properties are best described/analyzed in the time domain, whereas others are best de-

scribed/analyzed in the frequency domain.

Itisof particular importance that the frequency-domain representation of signals allowsfor the definition
of the signal-band part of asignal, which, in essence, is the only part of the signal that is important for

agiven application.

The Fourier Transformation will be used as the fundamental link between the two domains. In essence,
the Fourier transform of a signal represents the coefficients and angles in a uniquely-defined linear
combination of sinusoids in a continuum of frequencies, this linear combination being equal to the

signal.
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2.21 Fourier Transformation of Continuous-Time Signals

The Fourier transform G( f) of acontinuous-time signal ¢(t) is defined mathematically asin (2.2), where

convergence is assumed.

6 = [ ge i (22)

The inverse relation, the Inverse Fourier Transformation, describes that G(f) simply represents the

complex coefficients to the set of signals 2"/t f ¢ R

o) = [ T (eI 23)

Because e/27f* is an orthogonal basis’, we can define the signal’s energy F,; in the frequency band

O0< fao<f</fras

i)
Eaplo(t)] = 2 / G()df (2.4)
fa
Parseval’s Theorem (2.5) is a specia case
Bl = [ T P(ydt = / S e P (25)

The Fourier transformation will be denoted by F{-}, whereas the Fourier transformed signa will be
denoted by capitalization of the time-domain symbol and change of the argument from ¢ to f, i.e.

X(f) = F{=(t)}. A signa and its Fourier transform will be denoted as z(t) «» X (f).

UsingtheFourier Transformation. Probably the most powerful feature of the Fourier Transformation
is that when asignal g(t) <+ G(f) is applied as input to a (settled and stable) linear system with the
impulse response h(t) <+ H(f), the output y(¢) is described by

o0

y(t) = g(t) * h(t) = / gMA(t = A)dA < Y (f) = G(F)H(f) (2.6)

—00

The inverse property is used less often, but it is aso important

SO0 & X(1) Y () = [~ XY (=N (27)

3With respect to the scalar product calculating the average value of the product of two functions.
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2.2.2 Fourier Transformation of Discrete-Time Signals

In redlity, it is the same definition of the Fourier Transformation, Equation (2.2), which is applied to
continuous-time as well as discrete-time signals. For this to make sense, it is necessary to define a
continuous-time equivalent g.qy (¢) of the discrete-time signal gq(k), for which the Fourier transformed

can be calculated using the definition.

More precisely, the Fourier transform F;{-} of a discrete-time signa g, (%), sampled with the sampling
period Ty, is defined as

Ga(f) = Fa{ga(k)} = F{geav ()} (2.8)

The discrete-time to continuous-time (DT/CT) transformation to be applied in (2.8) is defined as
geqv(t) =T Z gd(k)5(t - kTs) (2-9)
keZ
The equivalent continuous-time signal g.qy () is thus a sequence of impulses scaled according to ¢;(k),

and occurring at the respective sampling instances.

Notice that geqv(t) is @a mathematical abstraction, which does not represent a real-world analog signal.
The DT/CT conversion (2.9) isillustrated in Figure 2.1, which aso shows the DT/CT conversion (3.21)
that, in general, is approximated in real-world implementations (discussed later).

Calculating the Fourier Transformed. An advantage of the above definition of the Fourier Trans-
formation of discrete-time signals is that it is simple to calculate the Fourier transform G;(f) of the
sequence g,4(k) that is sampled from a continuous-time signal ¢g(¢), for which the Fourier transform
G(f) isknown. The simplerelation is

Ga(f) = G(f —nfs) (2.10)

nez

Therelation (2.10) is shown graphically in Figure 2.2. At the top is shown the magnitude of the assumed
Fourier spectrum |G(f)| of the continuous-time signal g(¢). In the center are shown afew (for n €
{—2,-1,0,1,2}) of theinfinitely many spectra summed in Equation (2.10). At the bottom is shown the
magnitude of the sum |G4(f)|.



2.2. FREQUENCY-DOMAIN REPRESENTATION OF SIGNALS

gd(k) geqv(t) gh(t)
XX e
T2 5 L Tk 12 3 0 I
Figure 2.1: Two DT/CT conversions that are commonly used for signal analysis.
1G(f)]
f
T T 1 T T
_zfs _fs 0 fs zfs
n=-2 n=-—1 n=>0 n=1 n=2
f

_zfs _fs 0 fs zfs

Figure 2.2: A graphic interpretation of equation 2.10 illustrating aiasing.
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According to Parseval’s Theorem (2.5), the energy of g.qv (%) isinfinite, which isin agreement with the

signal including impulses.

Because the Fourier Transformation for discrete-time signals is based on the Fourier Transformation for

continuous-time signals, Equations (2.6) and (2.7) have trivial generalizations for discrete-time signals.

2.2.3 Definition of the Signal Band

The Fourier Transformation is, in principle, just a mathematical technique to separate a signa into
trigonometric functions, but it should be understood that its scope reaches far beyond the mathematical
level.

Severa applications evaluate an applied signa by its spectral composition, rather than by its waveform
or derivatives at a given time (i.e. , by its time-domain representation). For example, the human ear
is a highly-sophisticated electro-mechanical spectrum anayzer [19] [20], which is able to detect the
spectral composition of an air-pressure signal (sound) in the frequency range from about 20 Hz to 20
kHz. Although most sensors are much less delicate than the human ear, it isinvariably the case that many
applications areindifferent to even very significant variations in the applied signal’s spectral composition
outside a certain frequency range. The frequency range in which the signal is evaluated is called the
application’s signal band.

Notice that the signal band is defined with respect to the application to which the signal is applied,
and hence it is not a property that can be extracted from the signal itself. The signal band can be very
different from application to application. Seismological detectors are, for example, often designed with
asignal band from 0 Hz to (say) 5 Hz. Audio applications have somewhat wider signal bands (20 Hz to
20 kHz), whereas video applications and high-speed modems have signal bands which extend into the
low MHz range. The signal bands of cellular phones and other wireless communication equipment are
typicaly quite narrow frequency ranges centered around some high frequencies (the carriers, say, 900
MH2z).

An application’s bandwidth is considered to be the width of the signal band.
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2.24 Nyquist’s Sampling Theorem

Signals are sampled because it is generally easier to process them when they are represented in this
format. This is true for discrete-time analog signals as well as, and in particular, for digital signals.
However, thereis no point in sampling asignal, unlessit is possible to accurately reconstruct at least the

signal-band part of the signal.

Notice that for any chosen sampling period T; and origin of the time variable, a sampled sequence is
uniquely described by the continuous-time signal from which it is generated, but that the sampling of
two different continuous-time signals may result in the same discrete-time signal. In other words, the
process of sampling a continuous-time signal may represent a loss of information, and the continuous-
time signal can in genera be reconstructed from its sampled sequence only if certain conditions are met.

Nyquist's Sampling Criteriais an example of such conditions.

Reconstructing a continuous-time signal from a discrete-time signal will involve some kind of DT/CT
conversion. Without loss of generality, only DT/CT conversions, which can be modeled as applying

Jeqy () to alinear filter*, will be considered.

Traditional Version. As expressed by (2.10) and illustrated in Figure 2.2, the process of sampling a
signal is nonlinear. However, if the signal ¢g(t) «++ G(f) being sampled is characterized by Nyquist’s

Sampling Criteria,
G(f) =0 for [f]>fs/2 (2.11)

it follows that the sampled signa g¢;(k) <> G4(f) isequivalent to g(t) < G(f) in the Nyquist Range
|f| < fs/2. In other words, by filtering geqy (t) With alinear filter having the transfer function H ( f)

(2.12)

. { 1 for|f] < fi)2

0 for If] > fs/2

the result will be g(¢).

*geqv (t) Was defined by Equation (2.9).
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Nyquist’s Sampling Theorem simply states that a signal, which fulfills Nyquist’s Sampling Criteria, can
be ideally reconstructed from its sampled sequence.

225 Aliasing

If asignal is sampled at a sampling frequency f;, which does not fulfill Nyquist's Sampling Criteria
(2.11), aliasing will occur. Aliasing simply means that the individual terms in the sum described by
Equation (2.10) overlap, i.e. , that two terms both are non-zero at some frequency f. Figure 2.2 illus-

trates a situation in which significant aliasing takes place at frequencies around £/2 + nfs,n € Z.

Aliasing can sometimes be allowed. For example, if asigna only needs to be reconstructed in an appli-

cation's signal band, it is sufficient to require that aliasing does not take place at signal-band frequencies.

Modified Sampling Criteria. For an application which is characterized by the signal band, |f| <
fv < fs/2, the signal-band part of asignal g(¢) can be idealy reconstructed from the sequence g(k)
sampled from ¢(¢) at the sampling frequency f;, if and only if

G(f)=0 for [f[>fs=fo (213)

For the maximum signal-band width (f, = f5/2), this modified sampling criteria is equivalent to

Nyquist's Sampling Criteria.

2.3 Estimation of a Signal’s Fourier Spectrum

The mathematical definition of the Fourier Transformation, Equation (2.2), isused mainly for theoretical
derivations. In practice, amethod is needed to estimate the Fourier spectrum G( f) of asignal g(t), which
has been obtained by simulations or through experiments. The main incentive to discuss this method in
some detail is that it is used extensively to evaluate the performance of data converters. For a more

detailed and coherent discussion of this topic, the reader is referred to [21] and [22].
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2.3.1 Estimation Based on a Finite-Duration Signal

Obviously, it will generally be impossible to calculate the actual Fourier Transformation (2.2), because
any estimation process can only be based on finite-duration signals. Only in specia cases, e.g. when the
signal is known to be periodic and an exact representation of a period of the signal is available, can the
Fourier transform be calculated accurately. In the following, it will be assumed that G(f) < g(t) will

be estimated on the basis of g(t) known for |t| < T4y /2, where T, is some chosen observation time.

A typical way to estimate G(f) isto calculate Gons(f) <> gobs(t), Where gops () is defined as gons(t) =

wsq(t)g(t) and wsq(t) is the chosen time window, which in the following is defined as

(2.14)

1 for  |t| < Tops/2
0 otherwise

The feasibility of this technique follows from calculating the Fourier transform W, (f) of ws(t) as
Tobs/2 . 3
Wiq(f) = / e 72mItdt = TobsM (2.15)
7Tobs/2 7Tfj—'ObS

The Fourier transform W, (f) isillustrated in Figure 2.3, where it can be seen that the window’s main

lobe is twice as wide as the reciprocal of the observation time, and as high as the observation time.

Equation (2.7) implies that

Gobs(f) = G(f) * qu(f) (2.16)

This agrees with the observation that W, (f) is an impulse approximation when Ti,,s — oo, in which

case G(f) = Gowns(f)- Itis, however, more important to consider the case where 1,5 isfinite.

Properties of Finite-Duration Estimates. Figure 2.4 shows on the left the Fourier spectrum G(f)
of a two-tone periodic signal, and to the right the Fourier spectrum G,ps(f) of the observed signal.
Notice that G,1,5(f) can easily be predicted on the basis of the Fourier transform G(f), Figure 2.3, and
Equation (2.16).
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Figure 2.3: The Fourier transform of the rectangular window w (¢).
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Figure 2.4: The actual and the observed frequency spectrum of atwo-tone periodic signal.
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Clearly, when estimating a signal’s Fourier spectrum on the basis of a finite-duration representation,
the energy located at any one frequency, say fj, will be smeared over a range of frequencies in the

neighborhood of fy. This effect is called spectral leakage.

The range of frequencies to which the energy leaks is in principle infinitely wide. However, the width
of the frequency range, in which any given fraction (say 99.9%) of the energy is represented, will be
inversely proportional to the duration 7, of the observed signal. The width of the window’s W, (f)

main lobe will in the following be called the window’s spectral aperture. Notice that the spectral com-
position of asigna can be estimated with any accuracy, ssimply by using a sufficiently long observation

time Typs.

In the example illustrated in Figure 2.4, Gs(f) represents only afraction of the energy of G(f); this
isasimple implication of ¢(t) being periodic, and hence of infinite energy, whereas g,,s(¢) is of finite

duration and energy.

2.3.2 Estimation Based on Assumed Periodicity

All real-world analog signals are continuous and of finite duration, and hence they can be analyzed
using the basic Fourier transform without encountering any convergence problems. However, it is often
preferable to estimate asignal’s spectral composition in terms of power rather than energy. Onereasonis
that the typical test setup will evaluate a system'’s steady-state response to an input that is periodic in the
observation period. In that case, the observed signal will supposedly consist of a periodic deterministic

component (the signal) and a stationary stochastic component (noise).

Thefollowing is based on the fundamental assumption that the analyzed signal g(¢) can be approximated
by an periodic extension g, (t) of the observed signal gous(t)

o0

Gper (t) = Z Gobs (t — nTops) = Z g(t — nTobs)wsq (t — nTobs) (2.17)

n=—oo n=—0oo
Assuming that Ty, Spans exactly an integer number of periods, the deterministic component will be rep-
resented with great accuracy, but it should be obvious that a periodic extension of a stochastic component

will not represent the actual stochastic process.
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A stationary stochastic processis best described by its autocorrelation function and the Fourier transform
thereof, i.e. , the Spectral Power Density (SPD) (cf. [23]); but in practice, the noise signal’s SPD can be

estimated only on the basis of a periodic extension of an observed finite-duration sequence.

In the following, the average value shall refer to averaging in the period of time in which the considered

signal is observed.

The Band-Pass-Filter Method. Figure 2.5 shows the fundamental elements of the Band-Pass-Filter
(BPF) method.

Time Window Freq. Window Power Estimate
g(t) Gobs (t) ﬂAf ‘« gobs,nAf (t) Pav [gpern (t)]
Tobs nAf f

Figure 2.5: Fundamental steps in the Band-Pass-Filter (BPF) method.

Using Parseval’s Theorem (2.5) and the definition of the time window (2.14), it follows that the average

power of the periodic extension gy (t) Of gobs(t) can be calculated as

Paulgper(t)] = - / | Gons ()12 (2.18)

Tobs —00

The BPF method uses a tunable band-pass filter to isolate individual parts of the frequency spectrum
of Gops(f). For smplicity, the bandpass filter is assumed to be ideal with a single-sided tunable center

frequency of nA f and abandwidth of A f. Equation (2.18) can, therefore, be written in the form

o0 Af(n+0.5)
)y [ / |Gobs(f>|2df]

[a—y

Py [gper(t)]

3
o
@

= Af(n—0.5)

1 %]
= T 2 |:/_oo |G0bs,nAf(f)|2df:| (2.29)
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Using Parseval’s Theorem (2.5) and (2.19), it follows that g, (¢) thereby is separated in terms of power

o0

Paylgper(t)] = ijs > [ / ” gobs,nAf(t)th]

n=—oo -/ =X

= > Puvlgobsnas(®)] (2.20)

n=—oo

When estimating a noise signal, it makes the most sense to assume that |G,,s(f)| is constant in the
narrow frequency ranges. (n — 0.5)Af < f < (n + 0.5)Af, and hence that |G,s(f)| should be
estimated by

|Gobs(f)] = \/Aif/ gobs,nAf(t)th

obs\/ av gobs nAf )] for |f _ nAf| < 0.5Af (2.21)

However, when estimating a deterministic and assumed periodic signal component, it makes more sense
to approximate the estimated power by assuming a tone at nA f, and hence that |G, (f)| should be
estimated as

Gper(f)| = 6(f —nAf)\/ “[90‘;”“( I for If — nAf| < 0.5Af (2.22)

Using equations (2.15) and (2.16), it follows that the respective portion of |Gy,s(f)| can be estimated as

\/ av[gobs nAf( )]
2

|Gobs(f)|nAf = WSq(f - nAf) (2.23)

For real-world implementations of the BPF method, the window’s spectral aperture will typically be
much smaller than the band-pass filter’s band-width, and hence theindividual termsof (2.23) will usually

not overlap significantly.

2.3.3 TheDiscrete Fourier Transformation

The Discrete Fourier Transformation (DFT) is, in principle, just an implementation of the BPF method.
Hence, all the above comments on the assumed periodicity etc. also apply to the DFT.
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The DFT isanumeric technique, which isimplemented using DSP, therefore it is applied only to digital
signals. Thus, to obtain an estimate of the Fourier spectrum of a continuous-time signal, it must first be
sampled according to Nyquist's Criteria, Equation (2.11), to avoid aliasing. Because the DFT can be
implemented with arbitrary accuracy, both the real and the imaginary part of the Fourier spectrum can

be estimated.

Using the DFT isthe natural approach in asimulation environment, but it can also be used for laboratory

measurementsS.

Fundamental Properties of the DFT. The DFT is calculated on the basis of a finite sequence of
N samples, which are assumed to result from a uniform sampling with the sampling period 7;. The

observation period Ty iStherefore

Tobs = NT; (2.24)

The DFT can be considered to be an implementation of the BPF method using an array of N band-
pass filters with center frequencies ¢ f;,n € {0,1,2,... ,(N — 1)}, each with a bandwidth of f;/N.
Because the analyzed signal ¢(k) is sampled, the Fourier spectrum will be periodic with period f, and

hence the DFT provides an estimate of the entire Fourier spectrum.

As discussed with respect to the BPF method, it is a choice whether the estimated power in a given
frequency range is assumed to be equally distributed at al frequencies in the frequency range, or con-
centrated at a single frequency in the range. The DFT cannot possibly make an intelligent choice, and
hence it always assumes that the power islocated only at the band-pass filter’s center frequencies (which
in the following will be called the fundamental frequencies). Indeed, this is the correct choice if the

analyzed signal is periodic with the period’ T,,. In other words, the DFT assumes that (k) can be

5The DFT is available in many dedicated software packages, such as MATLAB.
M easurement equipment which is based on the DFT, however, requires a dedicated highly-accurate ADC [24].
"It does not have to be the shortest period.
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written in the form

N_
gobs(k) = cnejZW(fsn/N)k

=

il
Ll

= an cos(2n(fsn/N)k) + jby, sin(2n(fsn/N)k) (2.25)

i
(o=}

The vector DFT(n) issimply the N complex coefficients in

DFT(n) = cpt1, n€{1,2,3,... ,N} (2.26)

Windowing. The DFT’smethod of alocating the estimated power isonly correct if the analyzed signal
g(k) is periodic with the period Tgps. In a simulation environment, it is often possible to assure that
the signal component of the analyzed signal fulfills this requirement, but errors that are not in harmonic
relation to the signal component, such asthe quantization “noise” in delta-sigma modulators, will usually
not be periodic with period T;,s. As for the BPF method, spectral leakage will occur if the periodicity

requirement is not fulfilled.

The Fourier transform W, (f) of the basic rectangular time window (2.14) was shown in Figure 2.3. The
zero crossings of this transform are equidistant with the same distance as the spacing between the DFT’s
fundamental frequencies. An implication of this property isthat G,s(f) in (2.16) equals the analyzed
signal’s Fourier spectrum G( f) at the frequencies of interest if, but only if, g(k) is periodic with period
Tons- In other words, assuming periodicity, spectral leakage will not occur in the DFT. However, if g (k)
is not periodic with period T, Spectral leakage will occur, and it may cause very misleading results,
especially when using the DFT to estimate the Fourier spectrum of asignal with substantial out-of-band

powerd,

Fortunately, it is fairly simple to avoid the deleterious effects of spectral leakage. The technique is
to avoid substantial areas of the side lobes in the time window’s Fourier transformed (see Figure 2.3).

Side-lobe suppression can be obtained by scaling the time window’s coefficients (2.14), such that, even

8This is especially important for single-bit delta-sigma modul ators where the out-of-band power in general will be greater

than the signal power.
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in the lack of periodicity, the periodic extension of the observed windowed representation of the ana
lyzed continuous-time signal g,e(¢) is continuous and has continuous derivatives. An outstanding and
comprehensive tutorial on windowing, including the theory and the advantages and disadvantages of

various windows, is provided by Harris[22].

All DFTsthat are presented in the following have utilized the Hanning Window. The Hanning Window
is characterized by a fairly narrow main lobe, a good suppression of spectral components away from
the main lobe, and a worst-case processing loss of approximately 3 dB. A window’s processing loss is
comparable to the noise factor of an analog circuit. The results presented in this thesis have not been
corrected for the window’s processing loss, therefore all the results may be up to 3 dB on the pessimistic
side. Power located at any one of the fundamental frequencies will leak to the two neighboring funda-
mental frequencies. Hence, the power of a sinusoid signal must be estimated as the power represented

by three coefficients in DFT(n).

An Example of Windowing. Figure 2.6 showssix DFTs, which areall calculated from the same signal

provided by an idea four-bit delta-sigma modulator. Each of the plots show the DFT coefficients in dB
versus frequency normalized with respect to f; /2. The estimated signal consists of asignal component,

asinusoid at the normalized frequency 0.16; and a pseudo-stochastic component, the quantization noise
that supposedly has very little energy in the signal band, i.e. in the normalized frequency range from 0
t00.2.

The DFTsintheleft-hand column are based on 512 samples, whereas the DFTsin the right-hand column
are based on 4096 samples. Hence, the bandwidth of the longer DFTs band-pass filters is eight times
smaller than the bandwidth of the short DFTs band-pass filters. This property is reflected by the DFT
coefficients that represent the noise components, e.g. , at the normalized frequenciesfrom 0.4 to 1, which
are 9dB lower for thelonger DFTs. The coefficients of the DFTsthat represent the signal component are,
however, unaffected by the length of the DFT, because the energy is concentrated at a single frequency,
which will be part of only one band-pass filter's pass band. Hence, the modulator’s signal-to-noise ratio

(SNR) cannot be estimated as “the vertical distance between the signal bin and the noise floor,” whichis

®When not encountering spectral leakage.
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Figure 2.6: Examples of some of the misleading results that the DFT may cause when windowing is not

used correctly. The two lower plots are “correct.”
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acommon misconception.

Thetwo DFTsin thetop row illustrate what can happen when the signal component is not located exactly
at afundamental frequency. The rectangular window (2.14) was used for these two DFTs. Here, spectral
leakage masks the huge difference in power contents at neighboring frequencies around 0.16, hence the

total signal-band noise power cannot be observed correctly from these two DFTSs.

The two DFTsin the middle row are also based on the rectangular window, but here the signal compo-
nent is placed exactly at a fundamental frequency; consequently, spectral leakage does not occur from
the signal component. The DFTs are, however, still corrupted from spectral leakage from the noise

components, as can be observed in the signal band.

The two DFTsin the bottom row are based on a periodic signal, which has been applied to the Hanning
window. Spectral leakage of the noise components is now greatly suppressed, therefore the total power
of the signal-band noise can be estimated fairly accurately. Notice that the three characteristié® signal-

band notches in the quantization noise's power density can be observed only in these two plots, whichis
an effect of the improved detection. Also, notice that the signal component is spread to three coefficients
in the DFT (controlled spectral leakage). This can best be observed for the short DFT, but the effect is

also present in the longer DFT.

1They are characteristic of this specific modulator.



Chapter 3

Basic Aspects of Data Conversion

This chapter will discuss the fundamental elements in A/D and D/A converters. D/A converters are
discussed mainly because they are an integral part of most A/D converters, and as such, they are avery

important part of the problem.

To facilitate meaningful discussion of the various problems involved in implementing data converters,
the basic terminology and the ideal operation are defined. The potential problems associated with the
individual stages are identified, and the associated errors are modeled. The common measures for both

static and dynamic errors are al so described.

An important aspect of this chapter is that it points to several system-level reasons as to why most data
converters necessarily will operate with somewhat oversampled signals. Thisimplies that the proposed
data converters do not impose any real limitations only because they require the same degree of over-

sampling for yet another reason.

3.1 Fundamental Stepsin A/D Conversion

Figure 3.1 shows the basic steps of atypical A/D conversion process. The operation of some ADCs

cannot be separated into the illustrated three-step sequence, but the method is general enough to serve

29
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Anti-Aliasing Filter S/H Circuit Quantizer
a(t) T: g(t) gn(t) d(k)
Analog T Digital
Input fs/2 Output

Figure 3.1: Fundamental stepsin A/D conversion: anti-aliasing filtering, sampling, and quantization.

as background for the following discussion.

Anti-Aliasing Filter. Generally, the analog input signal will be a continuous-time signal. Since the
digital output signa is a discrete-time signal, a sampling process will take place. As any sampling
process is subject to diasing (cf. page 18), it is usually necessary to use an anti-aliasing filter to reduce

the consequences of this nonlinear effect to the required level.

Sample-and-Hold Circuit. Many A/D conversion structures make use of a dedicated sample-and-
hold (S/H) circuit. This circuit receives the continuous-time signa ¢(t¢), samples it, and provides as its
output the most recently sampled value. The reason for this operation is that many quantizers require a
minimum set-up time', or that the input must be held constant for a synchronized minimum period of

time (multi-step quantizers).

Quantizer. The quantizer performs the actual analog-to-digital conversion (quantization). ldeally, a

linear function will describe the relation between the analog signal ¢, (kT) and the digital output d(k).

3.1.1 ErrorsCaused by the Anti-Aliasing Filter

The anti-aliasing filtering process must take place prior to the sampling; consequently the filter can only

be implemented as a continuous-time filter. It can be an RLC filter, but for integrated-circuit applications

1Set-up time is the amount of time that the analog value must be provided (i.e., as a constant) to the quantizer before the

quantization can be initiated.
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it will typically be an active-RC or a transconductor-capacitor (g,,C) filter.

All analog filters — especially those operating in continuous time — are subject to errors due to analog
imperfections. These errors, which include thermal noise, flicker noise, distortion, etc., can very well
turn out to be thelimiting factorsin ahigh-performance A/D converter system. To minimize theinfluence
of such errors, the anti-aliasing filter should be designed with great care, and it should preferably have a

simple transfer function.

Thiswork does not address this design issue, but it is worthwhile to notice that the usual biquad topol ogy
may not be the optimal design approach. Some valuable information on this aspect can be obtained
from [25]. Also, someinteresting aspects on simplicity, linearity, and high-speed operation are discussed
in [26].

Estimation of Aliasing Errors. Aliasing errors are determined uniquely by the spectral composition
of the signal ¢(¢) that is undergoing sampling. To avoid aiasing errors, Nyquist's Sampling Theorem
(cf. page 17) requires that

G(f) = A(f)Haiias(f) =0, for [f] > fs/2 (31)
Thisis, however, impossible to obtain because any finite-duration signa has infinite bandwidth.

Fortunately, it is more reasonable to require that the power of the spectral components that alias back
into the signal band, E,ji.5[g(%)], be dominated by other errors, such as noise. In the following, it will be

assumed that the signal band is described by |f| < f,. The requirement can then be expressed as

nfs+fo
. — 2
Paulal0] = 3 [ el
[Einband [g(t)”max
SNR
IENEGIRA

— max
= SNR (3.2

Even for amodest signal-to-noise ratio (SNR), thisrequirement is nearly impossible to fulfill if the signa
band is as wide as the Nyquist Range, and if it is assumed that the signal-band power may be distributed

anywhere in the signal band.
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Figure 3.2: Error that alias back into the signal band for a six-times oversampled system.

To fulfill (3.2) for ahigh SNR, it isin genera necessary to oversample the signal ¢(t), i.e., to sample
g(t) at afrequency somewhat higher than f; = 2f;. The oversampling ratio (OSR) is defined as

osrR= I (3.3)

2/
Figure 3.2 is a representation of the expression for E,ji.s[g(t)] in Equation (3.2) for a six-times over-

sampled system.

Choosing the Anti-Aliasing Filter's Characteristic. As the Fourier spectrum G(f) < g¢(t) is the
product of theinput signal’s Fourier spectrum A(f) < a(t) and the anti-aliasing filter’stransfer function
H ias(f), no closed-form specification for the anti-aliasing filter can exist; the required properties of

H jias(f) are highly dependent on the signal A(f).

It can be derived from Figure 3.2 that the anti-aliasing filter should be designed as alow-pass filter with
the signal band asits pass band, and with a stop band for frequencies higher than f — f,. Assuming that
the filter has 0 dB gain in the pass band and a minimum attenuation R, in the stop band, the aliasing

criteria (3.2) can be written in the form
o [T 1A P
T 1Ay

Pajias|a(t)]
[-Pinband [a (t)”max

Equation (3.4) expresses that the anti-aliasing filter's stop-band attenuation must be at least the ratio

Ryop > SNR.
max

= SNR-

(3.4)

of the required SNR divided by the worst-case signal-to-aliasing-error ratio for afull-scale input signal
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a(t).

Unfortunately, (3.4) does not provide an absolute design criteria because whereas the full-scale signal-

band power [ Pypand[a(t)]] isusually well-specified, the worst-case power of the spectral components

max

that may alias back into the signal band is not. Hence, the specification of the the anti-aliasing filter can
only be based on a (qualified) assumption.

For low values of OSR, theratio Pyjias[a(t)]/ [Pubanda[a(t)]] should probably be estimated as at least

max
—40 dB, which may even be too optimistic. However, using this estimate in the specification for a high-
performance application with arequired SNR of (say) 100 dB, it follows that the anti-aliasing filter must

have a stop-band attenuation of at least 60 dB.

It iswell understood that, for relaxed pass-band requirements, the complexity of continuous-time low-
pass filters depends largely on the required stop-band attenuatiorf and the relative width of the transition
band

Is=h _Js 1 _g0sr—1 (3.5)

o

To obtain 60 dB stop-band suppression with a reasonably simple (say, third-order) filter, the OSR must
be at least 4 to 5.

It is important to notice that the above observation on the required OSR is general, and that it isnot a
consequence of aparticular choice of quantizer. Hence, quantizer structures that require asimilar degree

of oversampling to operate, such as those proposed in this work, do not have strict limitations for their

applicability.

3.1.2 ErrorsCaused by the Sample-and-Hold Circuit

The S/H circuit performs the sampling of the signal, and thusit inflicts aliasing errors. These errors were

discussed in detail in the previous section 3.1.1.

2Relative to the pass-band gain.
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As any other analog circuit, the S/H circuit will cause errors such as noise, offset, and nonlinearity. In
particular, the sampling switch is a very critical design aspect, as it will cause charge injection, clock

feedthrough, and nonlinearity. Details on these aspects can be found in [27-32].

The S/H circuit must meet the overall design specification, so it isdifficult to design for high-performance

applications. Thiswork, however, does not address this design aspect.

Clock Jitter.  All sampling circuits will be subject to clock-jitter problems. Jitter means that the signal

issampled at slightly incorrect time instances (3.6)
Gitter (k) = g(KTs + AT (KTy)) (3.6)

where, for simplicity, it is assumed that |AT'(¢)| < ;.

The simplification implies that jitter can modeled as a distortion of g(t) prior to the sampling instance.
More precisely, g;itter (k) iS considered to be generated by sampling gtter (¢), which is adistorted repre-
sentation of g(t)

gh(k) = gjitter(kTS) = g(kTS) + gerror(kTs) (37)
where

Gerror (KTs) ~ AT(kTS)%(g(kTS)) (3.8

A model for the jitter-induced error is shown in Figure 3.3.

A low-jitter clock signal can be generated using a crystal-based oscillator. As this work focuses on the
baseband as the signal band, the magnitude of the first-order derivative dg(t)/dt will be moderate, and
gerror(t) Will have a comparably low power. Hence, clock jitter is not considered to be a major problem
in this context. However, for band-pass applications (where dg(t)/dt may be large), clock-jitter errors

from the sampling process are of great concern. This aspect is discussed in more detail in Section 3.2.3.
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Figure 3.3: Model for clock-jitter-induced errors in the sampling process.

3.1.3 Characterization of the ldeal Quantizer

A fast high-performance quantizer is very difficult to design. The remaining part of this thesis is dedi-
cated in part to the optimization of this portion of the A/D converter system. This section will define the

ideal operation.

Basic Assumption. It isassumed that the quantizer’s input signal ¢,(¢) is supplied by a sample-and-
hold circuit, such that dynamic effects are avoided. In other words, from the quantizer’'s point of view,

the input is a constant (dc) signal.

Resolution. The quantizer will provide a digital output signal that at any time will attain one value
from afinite set of possible values. The number of possible output values will, in this thesis, be called
the quantizer’s resolution. The resolution may be expressed as the number of levels, e.g., an eight-level

ADC, or as a number of bits, e.g., a three-bit ADC (which is equivalent).

For simplicity, it will be assumed that the set of possible output values is a set of uniformly spaced
integers, but the spacing (i.e. the step size) need not be one. This flexibility is practical when dis-
cussing systems involving multiple quantizers, but (for simplicity) the overall quantizer, such asthe one

illustrated in Figure 3.1, will usually be characterized by a step size of one.

The quantizer's output will occasionally be characterized by binary codes rather than the represented

numeric value; e.g., the codes “000,” “001,” “010,” “011,” “100,” “101,” “110,” "111” could represent
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the eight possible states of a 3-bit ADC. Whenever necessary for clarity, the step size will be identified
with the code as “101@8,” i.e., code “five” with a step size of eight. Similarly, a 3-bit@8 ADC means a

3-bit ADC with a step size of eight. All ADCswill have a minimum and a maximum code.

d(k): Assigned Output Codes d(k): Assigned
Integer Vaue Integer Value : A

111 11

P T

— A ,,,,,,,,,,,
o) I R
] -
16 1LSB
000 g(k): Analog Input

Y

g(k): Analog Input

-~ -
Offset

Figure 3.4: Linear 3-bit@8 quantizers. Left: Definition of the step size (A) and of 1 LSB. Right:
Definition of offset and gain.

Ideal Operation. Figure 3.4 shows two linear 3-bit@8 quantizers. The quantizer shown to the left is
a proportional quantizer, which (except for the truncation) exhibits proportionality between the analog
input and the digital output (i.e., the assigned integer values). Notice that the unit “1 LSB” is defined
as an analog quantity, namely the variation of the analog input that will force a transition between two

neighbor output codes.

Although it is not a proportional quantizer, the quantizer shown to the right is also considered to be
linear. It illustrates that the assigned integer values can be chosen from any set of uniformly spaced

integers, for example, as shown {—38,0, 8, 16, 24, 32,40, 48}.

The quantizer’s gain is defined asthe step size divided by 1 LSB. The quantizer’s offset is defined as the

analog value added to the analog input before it becomes a proportional quantizer; the shown quantizer
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has an offset of 2 LSB.

Truncation. Because the analog input g(k) can attain values from a continuum of values, and because
the digital output d(k) must attain values from a finite set of values, the quantizer will necessarily
perform truncation. The truncation error, which often is called the “quantization error,” is simply the
residue r(k) of the quantization. If the quantizer is characterized by a gain K and an offset g, the

truncation error, i.e., the residue (%), is described as
T(k) = [(g(k) + goffset) - d(k)/K] (39)

Asd(k), inprinciple, isadeterministic function of g(k), theresidue (k) will be afunction 7'(-) of only

g(k)
r(k) = Tlg(k)] (3.10)
The truncation caused by an ideal 3-bit quantizer is shown in Figure 3.5. As shown, the magnitude of
r(k)

| 000|001 | 010011| 100| 101 | 110|111
AJ2 L r

Resolving Range
Figure 3.5: Residue of anidea 3-bit@A quantizer.

r(k) will be less than half the step size A, aslong asthe analog input g(k) iswithin the resolving range.

Based on the nonlinear relationship 7'(-) between g(k) and (%), the quantizer model shownin Figure 3.6

can be derived.
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Figure 3.6: Quantizer model.

For simplicity, the truncation error (k) is often modeled as a white-noise error signal. The validity
of this model is highly dependent on the situation. The function 7'(-) (3.10) can be approximated by
polynomials. A simple coarse approximation of 7'(-) in theresolving range for a(2P+1)-level quantizer

would be

T(y)N 2 12\(..2 _ 92V(..2 _ 92 2 p2 Y
LB LSB_.’IZ(ZU 19)(z” — 2°)(z* — 3%) - - - (z* — P*), where =18 (3.11)

The point is that, since T'(-) is a very nonlinear function, (3.11) involves high powers of z, hence the
Fourier spectrum R(f) <> r(k) will be asum of many terms of G(f) < g(k) convolved with itself the
same high number of times (cf. Equation (2.7)). As self convolution tends to flatten a function, it may

be reasonable to model R(f) aswhite noise.

There are, however, some situations where it is not reasonable to model R(f) as white noise. Firgt,
if the resolution of the quantizer is low, the order of (3.11) will be comparably low. Because G(f)
is then convolved with itself only a few times, the result will generaly not be a Fourier spectrum of
amost uniform power density, and hence (k) should not be modeled as white noise. Second, if (k) is
periodic, G(f) will be aline spectrum, which even after many self-convolution operations will be very
tonal. For example, if g(k) is periodic with period IV, then (k) will be periodic with period N aswelf.
Third, even if R(f) does have an approximately uniform spectral power density, modeling it as white

noise lacks the correlation information of g(k) and r(k), which sometimes is very important.

In conclusion, r(k) should be modeled as white noise only if

®Because T'(-) is adeterministic function.
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Figure 3.7: Characteristic of a N-level nonideal quantizer with step size A.

e the properties of the correlation of g(k) and (k) are not important,
e the quantizer has a high resolution (and many levels are excited), and

e theinput ¢g(k) includes substantial broad-band spectral components.

3.1.4 Characterization of Quantizer Errors

Very accurate quantizers are hard to realize. The spacing of the assigned integer values will (obviously)
be ideal, but the accuracy of their relation to the analog signal is prone to errors. Figure 3.7 shows the
static characteristic for an N-level nonideal quantizer with step size A. This section will classify the

various deviations from the ideal operation in terms of some well-known measures.

Linear Errors. It isnot aways obvious how a quantizer's gain and offset should be defined. In fact,

the correct definitions often depend on the application.

For example, consider a system that requires a quantizer with an absolute specification on its gain and

offset. Since the specification is absolute, there is no need to distinguish between linear and nonlinear
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errors. Instead, the specification can be used as the reference, with respect to which all deviations are
considered to be errors. Errors can then be defined by (3.9) and modeled as shown in Figure 3.6.

Quite often, however, offset and gain errors are of little importance compared to the quantizer’s linearity.
In that case, it sometimes makes sense to define a best linear characteristic, with respect to which
nonlinear errors (including truncation) are defined. The problem isthat the best linear characteristic may
be highly dependent on the analog input signal. Consider the quantizer shown in Figure 3.7. If the input,
for example, is such that only codes 2 and 3 are used, then the best linear characteristic would have a

higher gain and a different offset than the best linear characteristic for asignal where all codes are used.

To avoid inconsistency, the linear characteristic will be defined uniquely. For any N-level quantizer,
where N is greater than 2, there will be an maximum input value, L(1), for which al lower values will
be quantized to the minimum code. Similarly, there will be a minimum input value, L(N — 1), for
which al higher values will be converted to the maximum code. The linear characteristic is defined with

respect to the two reference points shown in Figure 3.7.

Accordingly, the unit 1 LSB is defined as

L(N —1) — L(1)
N -2

1LSB = (3.12)

and the quantizer's gain K is defined as

A (N —2)A

K=t~ tv=D-10)

(3.13)

The offset is aso defined with respect to the defined linear characteristic.

Nonlinear Errors. Truncation and other nonlinear errors are defined with respect to the defined linear
characteristic. For an N-level quantizer, an (N — 1)-element vector L(n) is defined. The nth element in

L(n) represents the lowest analog input*, for which code n occurs (see Figure 3.7).

Ideally, L(n) will consist of (N — 1) uniformly-spaced analog values. To characterize deviations from
theideal behavior, two measures are defined with respect to L(n): the differential nonlinearity, DNL(n),

and the integral nonlinearity, INL(n).

4with the exception of L(N — 1), which isdefined as previously described.
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Each horizontal step of the quantizer’s characteristic should be 1 LSB wide. DNL(n) isa (N — 2)-

element vector representing each step’s deviation from the ideal width

DNL(n) = [L(n + 1) — L(n)] — 1 LSB (3.14)

The transitions (marked with black dots in Figure 3.7) should occur at input values uniformly spaced
between L(1) and L(N — 1). The INL(n) isa (N — 1)-element vector representing the transitions

deviation from the ideal |ocations

INL(n) = [L(n)—L(1)]—(n—1)LSB

L(n) — L(1) n—1
IN -1 L) Nz NV -DLSB (3.15)

Notice that (by definition)

INL(1) = INL(N —1) =0 (3.16)

Often aquantizer is characterized by the largest elements of the two measures

INL = max |[INL(n)| and DNL = max |DNL(n)| (3.17)

A quantizer’'s DNL and INL performance are typically expressed in LSBs. A quantizer described by a
good DNL has a smooth characteristic®, but the overall linearity, i.e., the INL, need not be comparably
good [24]. On the other hand, agood INL implies agood DNL, because

DNL(r2) = INL(n + 1) — INL(n) (3.18)

Effective Number of Bits. It should be understood that a quantizer can be very linear without having
a high resolution, and also that a quantizer can have a high resolution without being very linear. It may
be relatively simple to increase a quantizer’s resolution, whereas it is amost always hard to increase its
relative linearity. In many publications, the relative linearity of data converters is expressed in terms of

anumber of bits.

5Good local linearity.
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A quantizer’s DNL expressed as an effective number of bits (ENOB) is defined as the fictitious resolution
for which the DNL is 1 LSB. In other words, a quantizer’'s DNL expressed in ENOB is defined as

_ [L(N —1) = LO)][N/(N —2)]
DNL = log, [ max, ONL () ] ENOB (3.19)
Similarly, aquantizer's INL expressed in ENOB is defined as
_ [L(N —1) = LO)][N/(N —2)]
INL = log, [ i, [INLG) ] ENOB (3.20)

3.2 Fundamental Stepsin D/A Conversion

Many A/D converters make use of D/A converters in the quantization process, and quite often the per-
formance of such ADCsis limited by the DAC's (typically good) performance. Hence, a good insight

into some aspects of D/A conversion isrequired for ameaningful evaluation of A/D converter structures.

3.21 Basic Voltage-Mode | mplementation

Figure 3.8 shows the fundamental steps of atypical voltage-mode D/A conversion process.

Discrete-Time ? Zero-Order Replica-Rejection |
D/A Converter - Holding Circuit Filter |
gn (1) t a(t)
DT/CT 3
: Analog
fs/2 ~ Output

Reconstruction Filter

Figure 3.8: Basic elementsin avoltage-mode D/A converter system.

First, the digital input d(k) is converted into a discrete-time voltage signal ¢ (k). The advantage of this
approach isthat the voltage signal isevaluated only at discrete time instances, so that slew-rate limitation
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and other nonlinear settling effects of this circuit can be accepted. The discrete-time voltage signal g (%)

isthen DT/CT converted by areconstruction filter.

The first stage of most reconstruction filters is a zero-order holding filter, which performs the DT/CT

conversion described by
gn(t) = gq(k) for KTy <t < (k+1)Ts (3.22)

The circuit is, in principle, a S/H circuit, for which the output is evaluated in continuous time. The
operation can be modeled in the frequency domain as afilter with the transfer functiorf (3.22) [33]:

sin(r 1) ]

T, (3.22)

Hyrjer(f) = Tye /™7 [

Thisfilter will suppress the replicaimages (2.10) somewhat, but quite often, adedicated replica-rejection

filter is needed to obtain further suppression.

Linearity of the Reconstruction Filter. The continuous-time evaluation of the output signa g, (¢)
from the DT/CT converter is a very critical aspect. Ideally, g,(¢) should be a staircase signal, but
this is impossible to obtain because it is not a continuous signal. Any implementation of a zero-order
holding circuit will include some degree of low-pass filtering, e.g., caused by the frequency response
of an employed op-amp. The main design aspect is, however, to make the circuit behave linearly. For
example, if the step size (i.e., the sample-to-sample variation) of ¢;(k) is large, the circuit is likely
to become dlew-rate limited, resulting in a performance deterioration. An analysis will show that, to
preserve linearity, the discrete-time analog signal ¢;(k) should be oversampled at least ten times and

include only little out-of-band power.

Single-bit delta-sigma D/A converters represent the signal-band information in the form of a highly-
oversampled single-bit signal d(k). The advantage of this approach is that it may avoid nonlinearity in
the discrete-time D/A conversion process. However, because the analog equivalent is a rapidly-varying

two-level signal, it is nearly impossible to DT/CT convert it linearly. In the frequency domain, the

®Except for the phase shift factor ¢ =7 /15 and the substitution of Tobs and T, thetransfer function Hpryor(f) isidentical
to Wsq(f) defined as (2.15) and illustrated in Figure 2.3.
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problem can be detected as the signal having substantial power at frequencies outside the signal band.
To facilitate linear DT/CT conversion, the two-level voltage signal is typicaly filtered with a discrete-

time low-pass filter before it is DT/CT converted; see Figure 3.9 and [25].

Single-Bit Smoothening Zero-Order Replica-Suppression
D/A Converter Filter Holding Circuit Filter
d(k) a(t)
—= DIA — DT/ICT |~ —
fs/2 fs/2

0,1,1,0,1,0,1,0,... — »%» %»/\

Figure 3.9: Output stage of asingle-hit delta-sigma D/A converter.

Notice that the main purpose of the smoothing filter is to reduce the step size, and not in particular to
suppress the replica images (2.10). Whether it is necessary to suppress replica images more than by
the zero-order holding filter depends on the application. However, even if the application is indifferent
to the received signal’s spectral composition outside the signal band, the above discussion illustrates
that filtering may be necessary to avoid nonlinearity of the channel, which transmits the signal to the
application. Another example of this aspect could be a loudspeaker that distorts high-frequency energy,
thereby transforming it into signal-band energy that corrupts the signal detected by the human ear. In

this case, however, the long-term effects on the human ear’s sensitivity should also be considered.

Assuming that the step size somehow has been made sufficiently small, the DT/CT converter can be

implemented as shown in Figure 8 in [25].
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3.2.2 Basic Current-Mode I mplementation

Due to the absence of a simple high-performance current-mode sample-and-hold circuit for the im-
plementation of a zero-order holding circuit, current-mode DACs do usually not employ discrete-time
analog signals. Figure 3.10 shows a model of a current-mode D/A converter structure, where the usual
three-stage separation isindicated. It should, however, be understood that the separation is mainly theo-

retical, asit does not generally represent the implementation’s topol ogy.

Discrete-Time Zero-Order Continuous-Time
D/A Converter Holding Circuit Replica-Rejection Filter
k) | " galk) ) alt)
—— - DIA = DTICT
Digital : : : Analog
Input - - : fs/2 Output
Current-Mode DAC

Figure 3.10: Current-mode D/A converter system.

Although other structures exist, such as R/2R and M/2M current splitters, the following will, without
loss of generality, assume that the current-mode DAC isimplemented using the current-steering principle
shown in Figure 3.11. At the onset of each new sample, the array of switches is controlled according
to the input code d(k), thereby guiding the current from each element in the array of current sources to
either the output terminal or to a current-dump node at the same potential. The switches remain in the
same position until the onset of the next sample, therefore the output current will be a staircase current
signal. The output current is typically processed as a continuous-time signal, possibly by a continuous-

time replica-rejection filter.

Dynamic Errors. As discussed for voltage-mode D/A converters, the DT/CT conversion is a very
critical process. Assuming temporarily that the static linearity of the DAC isideal, the focus will now be
on dynamic errors. Dynamic errors are caused by imperfect switching (glitches) when the output current

is updated from one value to the next.
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Continuous-Time
Replica-Rejection Filter

R t a(t)
Anaog

fs/2 Output

Figure 3.11: Typical current-steering D/A converter.

As dynamic errors occur only in the switching instances, their influence is highly dependent on the
duration of the switching period relative to the sampling period Z;. Current-mode D/A converters are
typically employed for high-speed and/or high-dynamic-range applicationd, so the switching period
either has to be short, relative to a aready short period 7;; or extremely short, relative to a (hopefully)
somewhat longer period. Hence, dynamic errors are often a main concern when designing a current-
mode DAC. Delta-sigma data converters that employ current-mode DACs are no exception to this point
because they usually aim for a very high dynamic-range performance, and because a high degree of

oversampling often will require the current-mode DAC to operate at high speed.

Dynamic Errors: Timing. One type of dynamic errors occurs if the timing is inaccurate, i.e., if the
switches are updated at dlightly shifted time instances. For example, if in atransition a current source
is switched from the current-dump node to the output node slightly after the other switches have been

updated, the output current will temporarily be too small.

Large timing-related dynamic errors are in general caused by poor layout, or by not including an array

"Current-steering switches can be made to operate very fast; hence high-speed operation is feasible. Assuming a small
signal bandwidth (say less than 100kHz), the noise performance of current-mode DACs can generally be made significantly
better than that of DACs which sample the signal as a voltage on a capacitor Csampi, and thereby have an inband thermal-noise

1 kT
power of at least 5z " & —

sampl
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of latches to isolate the switches from the digital circuitry decoding the switch-control signals, but even

the best current-steering DACs will (to some extent) be subject to this problem.

Dynamic Errors: Nonlinearity. The glitch caused by switching a current source is in often not per-
fectly proportiona to the current that is switched. If the current-steering DAC is implemented with an
array of binary-weighted current sources, the switching of each current source will be a nonlinear func-
tion of the input d(k); hence the glitch in the output current will have a nonlinear relationship to the

input. This effect can be avoided by using an array of equally-sized current sources [34].

Dynamic Errors: Intersymbol Interference. Stochastic variations in the production of integrated
circuits will cause circuit imperfections, which imply that even fully-differential circuits will be subject
to asymmetric switching. A simple example is shown in Figure 3.12, where the difference in the rise

and fall timesis shown exaggerated for the purpose of illustration.

Figure 3.12: Output current obtained by switching the same current source for two different sequences:

{0,1,1,0,1,0} and {0,1,1,1,0,0}.

The Figure illustrates the current provided by a single switched current source. The current g (¢) results
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from adigital input d(k), where the corresponding switch is controlled by the sequence {0,1,1,0,1,0},
whereas g (t) results from the sequence {0,1,1,1,0,0}. The glitch currents e, (¢) and eq(t) represent
for each of the two sequences the difference between the provided currents and the ideal two-level current

signals.

When the rise time and the fall time are identical, the glitch currents are proportional to the first-order
difference of the switching sequences, and hence the phenomenon can be made lineaf. However, when

the switching is asymmetric, nonlinearity will result.

For simplicity, consider just the average value of the signals. The two switching sequences have the same
average value (one half), therefore linearity will require the two glitch currents to have the same average
value. However, due to asymmetric switching, the average value of each glitch current will instead be
linearly dependent on the number of rising and falling edges (cf. Figure 3.12). Asg (¢) is switched more
often than g2 (t), the two glitch currents do not have the same average value, consequently the system is

nonlinear. This effect is often referred to as intersymbol interference.

In order to avoid intersymbol interference, return-to-zero (RTZ) switching schemes have been intro-
duced [35] [36] [37]. The basic principle is that the switches of a current-steering DAC are controlled
according to the input d(k) only during the first fraction, say 3/4, of each period Z;, and according to
some fixed code in the remaining portion of each period. Figure 3.13 shows the output from the current
source when a RTZ switching scheme is employed for the two signal sequences that were considered
above. Notice that the average values of the two glitch currents, ¢ (¢) and ex(t), are now the same. More
important, notice that the glitch current will always be proportional to the signal that is being converted

by the considered current source.

When using the RTZ switching scheme, the glitch current can be modeled simply as a small deviation
of the static value of the considered current source, and hence the technique is an efficient remedy for
dynamic errors caused by intersymbol interference. Phrased differently, the RTZ switching scheme
assures that the DT/CT conversion is described by an impulse response, which (by definition) assures

that the current source's control signal (bit signal) is D/A converted linearly.

8For example, by employing only unit-sized current sources as discussed above.
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Figure 3.13: Output of a current source when using the return-to-zero switching scheme.

3.2.3 Clock Jitter in D/A Converters

Clock jitter does usually not cause dominating errors because high-quality clock signals can be generated
using crystal-controlled clock generators. However, aD/A converter’s robustness to clock jitter is highly
dependent on the actual implementation, and for some high-performance DACs, clock-jitter-induced

errors can easily become dominating.

Modeling Clock Jitter Errors. D/A converters are sensitive to clock jitter only in the DT/CT con-
version process. Assuming at this point that the DT/CT converter is a zero-order holding circuit, the

jitter-distorted continuous-time output signal g;scr,» (%) can be described as
gjitter,h(t) = gd(k), for kT, + AT(k) <t< (k + 1)T5 + AT(k + 1) (3.23)

where, for simplicity, it has been assumed that AT'(k), k € Z isazero-mean stochastic process charac-

terized by a standard deviation much less than the sampling period Z;.

The jitter-induced error signal gister,error (t), i.€., the difference between g;itter,n () and the ideal output
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g (t) described by (3.21), is shown in Figure 3.14, and can be described as

lga(k) — galk —1)] for 0 < ¢ — KT, < AT(k)
gjitter,error(t) = [9a(k) — ga(k — 1)] for 0 >t — kT, > AT(k) (3.249)

0 otherwise

I

gjitter,h(t)
gjitter,error(t) A:T(l) >0 H AT@) >0 AT(E’): <0 ﬂ

H AT(2) >0 AT(3) <0 H AT(6) <0

Figure 3.14: Clock jitter on output from zero-order holding circuit.

Clearly, the polarity of gjitter,error(t) depends on the polarity of AT'(k), as well as the polarity of the
sample-to-sample variation of g;(k). As AT(k), by assumption, is a zero-mean noise signa with a
standard deviation much less than T;, the error signal g;iter,error (£) Will be asequence of short-duration
spikes, which for many purposes can be modeled as a sequence of impulseS. The strength of each
impulse will equal the enclosed areg; i.e., the jitter-induced error signal can be expressed as

gjitter,error(t) = Z [gd(k - 1) - gd(k)]AT(k)é(t - kTs) (325)

k=—o00

® Theimpulse approximation (3.25) can be used to estimate the spectral composition of gitser,error (£), ONNY for frequencies
which are somewhat lower than the reciprocal of the standard deviation of the stochastic process AT (k). In less-than-extreme
cases, this model will be valid in the signal band. Hence, the approximation can be used to estimate the signal-band power of
jitter,error (), DUt ObViously, not to estimate the total power.
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Notice that giitter.error(t) iSthe time-domain equivalent'© of

AT (k)
T

gjitter,error(k) = [gd(k - ]-) - gd(k)] (326)

and hence, the spectral composition of gitter,error(t) Can be found by convolving the Fourier spec-
trum of the first-order difference of —g, (k) with the Fourier spectrum of the relative-clock-jitter signal
AT (k)/Ts.

Clock jitter will include a flicker-noise component and a thermal-noise component. However, it is gen-
eraly thejitter’s thermal-noise component that may cause problems, and hence the flicker-noise compo-

nent will be neglected in the following.

Given the assumption that AT'(k)/T; is a white-noise signal, i.e that it is a sequence of identically-
distributed independent stochastic events, it follows that gitter,error(k) Will be a signal with uniform
power density!!. The total power of gjitter.error(k) Will be the power of AT'(k)/T; multiplied by the
average step size of g,(k).

Without taking extreme measures and for asampling frequency in the few-MHz range[38], the stochastic
element AT (k) /T, can be made to have astandard deviation in the order of 50pS- 2MHz = 10~*. This

value will be used in the following evaluations to get afeeling of the problem’s significance.

Clock Jitter in Voltage-Mode D/A Converters.  Voltage-mode D/A converterswill typically employ a
zero-order holding circuit for the DT/CT conversion, and hence the above derivation will apply directly.
The worst-case'? average value of |gy(k — 1) — gq(k)| is A,,/OSR, where A, is the full-scale peak-
to-peak signal swing.

Knowing that the clock-jitter-induced error signal gister,error (t) N@s a uniform spectral power density,

A s defined by (2.9).

MAlthough gjister,error (k) has uniform power density, it is not awhite-noise signal. The individual samples are modulated
with [gqa(k — 1) — ga(k)], SO itisnot astationary stochastic process.

2pssuming a full-scale signal at the highest signal-band frequency.
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the worst-case signal-band power can be calculated as

AT(R)\? [ Ay \? 1
P[gjitter,error(t)] < ( T, > (Oél;) OSR
Aby
OSR?

~ 10°%. (3.27)

o —

2
where (A:?—('“)> ~ 108 represents the above assumption of a fair estimate for what can be achieved
S

without taking extreme measures, i.e. for what is considered to be a reasonable requirement for well-
designed mass-produced electronic equipment. As the full-scale signal power is Agp/& it follows that
the signal-to-noise ratio (SNR) will bein the order of 10" OSR?. Asdiscussed on page 43, voltage-mode
DACs will usually operate on at least ten times oversampled signals, in which case the SNR estimate
will be 100 dB.

The conclusion isthat clock-jitter-induced errorstypically can be made non-dominating in voltage-mode
DACs of up to 16-hits of resolution (audio quality). Notice, however, that thisis not the caseif the signd
is significantly less oversampled. It is quite difficult to meet the clock-jitter requirement for a 16-bit
DAC operating at Nyquist rate, i.e., for OSR = 1. In this case, the clock-jitter requirement is just
a few pS for a 2MHz clock signal — a level of performance which normally will require a stabilized
laboratory test setup. This is yet another reason for why high-performance DACs must operate on

somewhat oversampled signals.

Clock Jitter in Current-Mode D/A Converters. In principle, the clock-jitter sensitivity of current-
mode DACs is the same as that of voltage-mode DACSs. In readlity, however, the situation is often much

less favorable.

Consider a current-mode DAC, which is designed to meet the same specifications as those of a good
voltage-mode DAC. High-performance current-mode DACs are usually designed to operate with aRTZ
switching scheme in order to avoid intersymbol interference errors (cf. page 47). A problem arises
because the RTZ switching scheme produces asigna which (for each sample) has two clock-jitter-prone
edgesinstead of just one, and because the average step size (per sample) will be 4, independent of the
OSR. Hence, to meet the same specifications, the standard deviation of AT'(k)/T; must be a factor of



3.2. FUNDAMENTAL STEPSIN D/A CONVERSION 53

OSR smaller for the current-mode implementation than for the voltage-mode implementation. Because
the improved thermal noise performance often is the main incentive to implement a DAC in current
mode, the system specifications can be quite tough, therefore, the clock-jitter requirement can become
extreme (arequirement of lessthan 1 pS of clock-jitter is not uncommon, but it is extremely difficult to

fulfill).

In conclusion, the only way to avoid very strict clock-jitter requirements is to implement the current-
mode DAC without RTZ switching, in which case other techniques must be employed to avoid inter-
symbol-interference errors. Such aternative techniques are discussed in the second part of this thesis

and in [35].

3.2.4 Static Performance of D/A Converters

The fundamental requirement of any D/A converter is that it should generate an analog signal which is
proportional to the digital input. This section will define the DAC's static characteristic, its gain and

offset, some terminology, and some measures for static DAC nonidealities.

Static Output Value. The static performance of a DAC is evaluated when the input is held constant.
The static analog output corresponding to a considered code is defined as the average value of the pro-

vided output.

Resolution and Step Size. The set of permitted digital input codes is assumed to represent a set of
integers, which are uniformly distributed with the step size A. The resolution is defined as the number
of permitted input codes. The notation, “3-bit@A DAC,” represents a DAC with eight permitted input
codes representing integers spaced with the step size A.

Static Characteristic. The static characteristic is defined as the relation between each represented
integer and the corresponding static analog output. The static characteristic of an N-level DAC can be
described by avector S(n), where S(1) is the static analog output for the smallest represented integer,
and S(V) isthe static analog output for the largest represented integer (see Figure 3.15).
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Figure 3.15: Static characteristic of an nonideal 3-bit@A DAC.

Linear Characteristic. Thelinear characteristic of an N-level @A DAC is defined on the basis of the
two reference points shown in Figure 3.15. The analog quantity 1 LSB is defined as

S(N) —5(1)

1LSB =
N -1

(3.29)

and the DAC'sgain K isdefined as

(3.29)

Measures for Static Nonlinearity. Equivalent to the definitions provided on page 40 for ADC DNL
and INL performance, the following definitions apply for N-level DACs:

DNL(n) = [S(n+1)—S(n)]—1LSB (3.30)

INL(n) = [S(n)—S(1)]—(n—1)LSB (3.31)
_ [S(V) = S(][1 +1/N]

DNL = 1og2[ i, [DNL () ]ENOB (3.32)

INL = 1og2[[5 (NIL;X‘: |(|1!2|]|E1(7$|1/N]] ENOB (3.33)



3.2. FUNDAMENTAL STEPSIN D/A CONVERSION 55

3.25 Linearity Limitations

This section will discuss the factors that limit a DAC'’s static linearity. The discussion will only address
DACs that generate the analog output signal as a sum of one or more concurrent analog signals, such as,

for example, the current-steering DAC shown in Figure 3.11.

Basic Principle for D/A Conversion. The basic principle for many D/A converters is shown in Fig-

ure 3.16.

k) pac colk)
by (k) DAC ca(k) |
Digital | by (k) DAC co(k) |
d(k) Front-End a(k)
S e (Sepercton bs(k) DAC cs(k) JF
bpfl(k) DAC Cpfl(k)

Figure 3.16: Topology of most D/A converters.

The digital front-end separates the digital input signal d(k) into asum of P digital signals:

P-1

d(k) = bi(k) (3.34)

1=

These P signals will in general be of low resolution, such that they are easy to D/A convert individually.
The P DACs al have the same nominal gain K, therefore the analog output « (k) can be formed simply
by adding the generated analog signals ¢ (k)

a(k) = ci(k) = > Kbi(k) = Kd(k) (3.35)
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The digital front end can be implemented with arbitrary accuracy. Any nonideality of this type of D/A
converter must, therefore, originate from either the individual D/A conversions or from the summing

operation.

If the analog signals ¢; (k) are represented as currents, the summing operation can be implemented sim-
ply by connecting them to one common node (shown in Figure 3.11). Kirchoff’s current law assures that
the summation will be ideal for al practical purposes. However, because voltage signals are difficult
to add accurately, voltage-mode DACs are typically implemented as switched-capacitor (SC) circuits,
in which case the analog signals ¢; (k) are represented as charge pulses (which can be added as ideally
as currents). The issue of accurately summing ¢ (k) is thereby replaced by the problem of accurately
converting the discrete-time summed-charge signal into a discrete-time voltage signal. This design as-
pect is well understood, and circuits, the linearity of which is limited mainly by the linearity of the
available capacitors, are known [39]. Although highly dependent on the technology used, poly-to-paly,
metal-to-poly, and metal-to-metal capacitors will be up to 14-18 bits linear3.

The sum of the individual DACs' offsets will be the overall DAC's offset, but they will not cause any
other errors. Asthe offset of the overall DAC usually is not considered to be a critical parameter, offsets

in the individual DACs are of only little concern.

In conclusion, the static linearity of DACs, which are implemented in the topology shown in Figure 3.16,

is affected only by inaccurate gain and nonlinearities of the individual DACs.

Binary-Weighted D/A Converters. Usually, thedigital input signal d(k) iscoded in the binary formet,
which makes binary-weighted DACs especially simple to implement. For such DACs, the digital front
end is just a simple separation, where iy (k) is the most-significant bit of d(k), b (k) the second-most-
significant bit of d(k), etc.. Assuming that d(k) isof five-bit resolution, & (k) will atain only two values:
0 and 16; aso by (k) will attain only two values: 0 and 8, etc.. Each of the five DACs will, therefore,

BThe linearity of a capacitor/resistor is defined as the linearity of the exploited part of the function describing the charge-to-
voltage/voltage-to-current relationship. The DNL and INL linearity of afunction f(z), in arange of values z € 7, is defined
using the expressions (3.32) and (3.33). Here, S(n) = f(xn), where z,, isaset of N — oo uniformly distributed values in
J. Thetext refers to the estimated INL linearity.
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consist of only one analog source, which is turned on and off according to the corresponding signa
bi(k). Astheinput signals b; (k) are binary scaled, so will the analog sources constituting the five DACs
be binary scaled.

Now, consider the static linearity. Each of the fiveinternal DACsisatwo-level DAC, hence individualy,
they are all inherently linear'®. In other words, each of the separated signals 4; (k) will be D/A converted
linearly, implying that only differences of the individual DACs' gain may cause static nonlinearity. As-
sume that the nominally identical gains of the five DACs are Ky, K1, K2, K3, and K4. The gain of the
overall DAC will, therefore, be

16Ky +8K1 +4Ks + 2K3 + 1K,

K= 3.36
164+8+4+2+1 ( )

which leads to the following description of the output-referred nonlinearity error

aerror(k) = a(k) - I?d(k) — Goffset
= > bi(k)(K; - K) (3.37)
i=0
Using Schwartz's inequality, it follows that
4 —~

|Gerror (k) — Gerror(k — 1) < Z |bi(k) — bi(k — 1)|(K; — K) (3.38)

As each of the separated signals b;(k) are related to d(k) by modulo functions, even small changes in
d(k) can result in large changes in b;(k), and consequently in large changes derror (k). 1N other words,
binary-weighted DACs will typicaly exhibit a poor DNL performance, so they are not suitable for D/A

conversion of large-dynamic-range signals.

Unit-Element DACs. A DAC with agood DNL is preferable for D/A conversion of large-dynamic-
range signals. Unit-element DACs have this property.

Still referring to Figure 3.16, the digital front end of a N-bit@1 unit-element DAC separates the digital
input into (2V — 1) signals b;(k), which al attain only two values: 0 and 1. An array of (2V — 1)

1Because the static characteristic consists of only two points, which will always define a straight line.
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nominally-identical DACs, each consisting of only one analog source, is used to generate the analog

output a(k) by turning on as many of these analog sources as the digital input d(k) prescribes.

Assuming that the gains of the individual DACs are described by Ko, K, ... , K(on_y), the overall
DAC’sgainIA(wiII be

N
> 23:072 K

which leads to the following description of the output-referred nonlinear error

aerror(k) = a(k) - I?d(k) — Goffset
2N _1
= > bi(k)(K; - K) (3.40)
=0

If, asusual, the digital front end is of the thermometer-coding type
bi(k) =1 for i<d(k), and b;(k) =0 otherwise (3.41)

itimpliesthat asmall variation in d(k) will cause acomparably small variation in .o (k) because only

asmany as|d(k) — d(k — 1)| terms are atered in the summation in (3.40).

More precisely, the DAC s DNL is simply the maximum absolute deviation from the average value of the
analog sources. Thiswill generally be 3-5 times the standard deviation of the individual analog source,

which for modern technologies is typically less than 0.01 LSB.

Sectored DACs. Clearly, because the digital front end and especialy the interconnection of unit-
element DACs can easily become quite involved™®, they are more difficult to implement than their
binary-weighted counterparts. Using the unit-element-DAC topology is often unnecessary, because a
simple analysis will show that the stochastic properties® of the INL performance are the same as those

of abinary-weighted DAC, and because only few applications will require a DNL performance as good

BUnit-element DACs are, however, not as complicated to implement as they may appear at first sight. Some details on this

aspect can be found in [34].
8The stochastic properties of the INL will typically only depend on the output value, which will be the same.
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as 0.01 LSB. Sectored DACs represent a compromise between complexity and DNL performance [40].
In these converters, the least-significant bits are D/A converted with binary-weighted DACs, whereas the

most-significant bits are first thermometer coded and then D/A converted with unit-element DACs.

Matching of Analog Sources. Therelative matching of electrical properties spatially distributed on an
integrated-circuit surface depends somewhat on the layout technique. Any on-chip electrical parameter

will usually be afunction f(z,y) of the on-chip coordinates as well as subject to a stochastic variation.

For agiven area A used for the implementation of supposedly matched devices, the variation of f(z,y)
over A will typically be larger than the stochastic process’ standard variation due to systematic errors

and gradients in processing. Hence, to obtain good matching, one should strive to cancel the effect of

f(z,y).

As f(z,y) is generally unknown, it has become common practice to cancel only the linear trend in
f(z,y) using the common-centroid layout principle, i.e., to lay out each matched element on an area

A; C A, such that the centroid (z.., y..) isthe same for al elements

(Zees Yee) = (//Aixdwdy, //Aiydxdy,> (3.42)

Obvioudly, the common-centroid layout technique will provide the best cancellation when the matched
devices are laid out on a small area 4. However, to assure a small standard deviation of the matching
process stochastic element, the matched devices should preferably be large. These two requirements
are not necessarily contradictory because each device in a set of matched devices can be implemented
asaparalel combination of several small devices, each small device being a matched element in one of

several arrays of matched devices, each array being implemented in asmall area.

In principle, arbitrarily good matching can be obtained using the above technique, but in reality, con-
siderations such as chip area (cost), yield, power consumption, dynamic effects and/or stray capacitance

will limit the obtainable relative matching.

Conclusion. The static linearity of the discussed types of DACsis singularly dependent on the relative

accuracy with which an array of analog sources can be implemented. Whereas the DNL performance
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can be made almost arbitrarily good by using a (partly) thermometer-coding digital front end, the INL
performance can only be improved by improving the relative matching of the analog sources. When
using a modern technology and good layout techniques, the INL performance can be made as good
as 1012 bits. Laser trimming and other once-and-for-all post-processing calibration techniques can
be used to obtain better matching, but they are expensive to perform and they lack the ability to track
effects due to, for example, aging and temperature. Better alternatives include power-up and background
calibration, but these techniques tend to require arelatively large chip areafor their implementation, and

they are subject to leakage effects if the compensation parameter is stored in analog form on a capacitor.

3.3 Measuring Dynamic Performance

Unless a data converter is used for ultra-low-bandwidth applications, its linearity may not be fully de-
scribed by its static performance measures, i.e., its DNL and INL description. For high-speed data

conversion, it isthe dynamic performance rather than the static performance which is of interest.

Several factors may limit the dynamic performance. Examples include nonlinearities of the filters, S/H
circuits, and DT/CT converters used; clock-jitter effects; device noise and noise coupling; etc.. Be-
cause static nonlinearity also will manifest itself as dynamic nonlinearity, a thorough description of a

converter's dynamic performance avoids the need for a static linearity description.

The dynamic performance is best described in the frequency domain. The data converter is operated
under certain test conditions, and the performance is evaluated as the output-referred ratio of the applied
signal’s power relative to the power of the considered error. To ease the process of separating the output
signal’s power in terms of “signal” and “error,” the applied test signal will typically consist of one or

more Sinusoids.

As the dynamic performance may depend significantly on the test conditions, the measurements should
be repeated for many sets of test conditions, and the results presented in a graphical format. Obviously,

full particulars of the measurement technique and test conditions used are an essential part of the results.
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3.3.1 Signal-to-Noise Ratio

Noise is the term often used to indicate those errors for which the source is assumed to be of stochastic
nature. Because noise in general will have to be considered inits wide sense, it need not be independent
of the input signal. Noise sources include thermal and flicker device noise, substrate- and capacitively-

coupled noise, clock-jitter-induced noise, and quantization noise.

The signal-to-noise ratio (SNR) is usually measured for asinusoid input signal and plotted as afunction
of the input signal’s amplitude. Harmonic distortion and other errors, which are described by separate

measures, are not included in the estimated error powert’.

If the noise power is signal-independent, which is the case for device noise, the SNR will be linearly
dependent on the input signal’s magnitude. If the SNR saturates a given level, it indicates that clock-
jitter-induced noise dominates from that level and up. For single-bit delta-sigma modulators, the SNR
will not only saturate but drop for input signals above a certain level. This occurs when the internal
one-bit quantizer becomes overloaded, in which case the quantization-noise power increases faster than

the signal power.

The signal-band noise power is calculated by integration of the estimated spectral power density over
the signal band, hence a wide-bandwidth application will be relatively more sensitive to noise than a
narrow-bandwidth application'®. The lower limit (in frequency) of flicker noise is a somewhat tricky

issue, but it is not important for the following discussion.

3.3.2 Dynamic Range

The dynamic range (DR) is defined on basis of the SNR. The DR is the ratio of the magnitude of
the largest sinusoid input that does not cause clipping or other coarse nonlinear effects, relative to the

magnitude of the sinusoid input for which the SNRis 0 dB.

The signal-to-noise-and-distortion ratio (SNDR) is a composite measure, for which the error consist of all signal-band

spectral components which are not in linear relation to the applied input signal.
8Als0, as the total signal-band power of the sampling thermal noise (KT/C noise) in switched-capacitor circuitsisinversely

proportional to both the capacitor size and the oversampling ratio, large capacitors are required for SC circuits with low OSR.
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3.3.3 Spurious-Free Dynamic Range

A full-scale sinusoid of frequency f; is applied as test input, and the output signal is evaluated at al
frequencies in the signal band. The ratio of the estimated power density of the output signal’s spectral
component centered at f; and the largest other spectral component is called the spurious-free dynamic
range (SFDR). Often, the SFDR is close to the reciprocal of the total harmonic distortion (THD), but in
some implementations the largest spurious spectral component occurs at a frequency which isnot in a

harmonic relationship to f.

3.3.4 Intermodulation Distortion

Simple harmonic-distortion measurements are not suitable to evaluate high-frequency linearity. The
problem is that the dominating harmonic may occur at a frequency outside the signal band, therefore,
if out-of-band spectral components are rejected, for example, by low-pass filtering, the measurement
may provide misleadingly optimistic results. To avoid this scenario, the linearity should be evaluated
as a signal-to-distortion ratio where the distortion is the intermodulation product occurring in the signal
band.

3.4 Quantizer Topologies

Again addressing the implementation of A/D converters, this section will provide an overview of some
commonly used quantizer topologies. Each topology is associated with advantages and disadvantages in

terms of linearity, speed, power consumption, complexity, and latency.

Although quantizers can be classified in several ways, the following will consider quantizers to be sep-
arated into two main categories. data quantizers and signal quantizers. A data quantizer is defined as
a quantizer that evaluates each input sample as accurately as possible, and which does not take any
sample-to-sample correlation into account. In other words, a data quantizer’s output approximates the

time-domain description of the received signal (cf. Section 2.1). A signal quantizer, on the other hand,
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is defined as a quantizer that evaluates the input signal’s spectral composition as accurately as possible.
Each sample may or may not be quantized accurately, but the quantizer has memory and it assures that
the sequence of errors, i.e., the error signal, has very little energy in the signal band. In other words, a
signal quantizer approximates the signal-band frequency-domain description of the received signal (cf.
Section 2.2).

Because the Fourier transformation is a bijective” relation between the time domain and the frequency
domain, anideal data quantizer will yield exactly the same output signal asan ideal signal quantizer. The
difference will show only in the presence of quantizer nonidealities, where a data quantizer can produce a
substantial amount of signal-band quantization noise and harmonic distortion, whereas asignal quantizer
will suppress such errorsin the signal band by moving the energy to other frequencies outside the signal
band. Clearly, asigna quantizer will require a minimum degree of oversampling. Elsewhere, they are

sometimes referred to as oversampling quantizers.

It is the application that determines which type of quantizer should be used. For example, if the appli-
cation isto measure the resistance of alarge number of produced resistors to facilitate estimation of the
production’s standard deviation, the resistance of each resistor represents data which should be eval uated
using a data quantizer and not asignal quantizer. However, the majority of applications process signals

rather than data; in such cases asignal quantizer may be the better choice.

3.4.1 Direct-Comparison Data Quantizers

Data quantizers will be classified as one of two types, one of which is called Direct-Comparison quan-
tizers. Direct-Comparison quantizers are all characterized by the property that the (possibly sampled-
and-held) input signal is quantized by multiple comparisons with analog signals generated by D/A con-

version.

19 .e. there is a one-to-one correspondence.
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Counting Quantizers. Extremely good linearity?® can be obtained using quantizers of the counting
type, such as dual-slope and incremental [41] quantizers, but the achievable bandwidth is so low that
they are useful mainly for instrumentation and calibration purposes, which nonetheless are important

applications for data converters.

Successive-Approximation Quantizers. Higher bandwidth and good resolution can be obtained using
successive-approximation quantizers, where each input sample is digitized by generating a sequence
of successively improved approximations. Each approximation is D/A converted, and the output is
compared with the sampled-and-held input. The result of each comparison is used as the basis for the

next supposedly-improved approximation.

In principle, the uncertainty of each new approximation in the sequence of approximations is reduced
by afactor of two?t, but (obviously) the uncertainty of any approximation cannot be reduced to less
than the uncertainty by which the approximation is D/A converted, that is, the employed DAC’s INL
performance. In other words, the linearity of a successive-approximation quantizer is limited by the
linearity of the employed DAC, which typically will bein the order of 10 bit. Assuming that only 1 bit is
resolved for each new approximation, ten cycles will be necessary to resolve an input sample for 10-bit
conversion, which, combined with a minimum degree of oversampling?® (see section 3.1.1), will limit

the bandwidth to less than one percent of the cycle frequency, i.e. , typically well below 1IMHz.

Flash Quantizers. Flash quantizers are among the fastest quantizers available. By means of (for ex-
ample) aresistor string, N supposedly equidistant analog reference signals (say voltages) are generated.
At the sampling instances, the input signal is simultaneously compared to each and all of these N refer-
ence signals, thereby producing N one-bit digital signals, which jointly represent the quantized value in
the thermometer-coded format. A digital back end isin general used to recode the digital signal into the

2| n excess of 20 bits.
ZAThisisthetypical case, but more than one bit can be resolved in each cycle.
22This, of course, only makes sense if the quantizer is used for a signal-quantizer application.
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more dense binary-coded format®3.

As N comparators are required for the implementation of an N-level quantizer, flash quantizers typi-
cally have afairly low resolution, say less than 8 bits. The main sources of nonlinearity include non-
equidistant spacing of the generated analog signals (DAC nonlinearity) and the offsets of the individual
comparators. Interpolation techniques can, however, be used efficiently to reduce the offset-induced
nonlinearity. Depending on the actual implementatior?®, the INL performance is typically in the order

of 5-10 hits.

Flash quantizers can be designed for high-speed quantization. Sampling frequencies well beyond 100
MHz are achievable, but their main limitations are high circuit complexity and power consumption, low

resolution, and somewhat poor linearity.

Subranging Quantizers. Subranging quantizers represent a compromise between conversion speed
and circuit complexity. The sampled-and-held input signal isfirst compared to NV voltages equidistantly
spaced in the full range, whereafter the same N comparators are used to compare the input signal with
N voltages equidistant spaced in a smaller range centered around the voltage estimated in the first
quantization. In this way, an N2-level quantizer can be implemented using only N comparators. These
guantizers can be designed to have an INL linearity in the order of 8-10 bits, and they are often employed

in portable video equipment.

3.4.2 Residue-Calculating Data Quantizers

The second type of data quantizers is caled Residue-Calculating quantizers. They are, in principle,
all based on the simple residue-calculating stage shown in Figure 3.17. The stage’s input signal ¢(t)
is quantized by a (typically flash-type direct-comparison) quantizer providing the digital output signal
d(k). Thesignal d(k) is D/A converted and the result is subtracted from the stage’s input signal ¢(t¢) to

ZThe digital back end may also include some logic to prevent the deleterious effects from “bubbles’ in the thermometer

codes.
24 lthough it may seem unnecessary, a good S/H circuit is often required to obtain good linearity.
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produce 7(k). This operation can be described as
g(k) =7(k) + d(k)Kpac + Opac + INLpac(d(k)] (343)

where Kpac is the DAC's gain, Opac is the DAC's offset, and INLpac[d(k)] represents the DAC's
INL error for the codes representing d(k). Notice that (k) is an estimate of the residue (k) of the
quantization d(k) of g(k) calculated with respect to the linear characteristic defined by the DAC (cf.
Equation (3.9) where gofiset = —Opac and K = 1/ Kpac).

o

Figure 3.17: Basic residue stage used in most residue-calculating quantizers.

The overall point isthat, if 7(k) is quantized by a quantizer with gain K| = 1/Kpac, so that d; (k) =
7(k)/Kpac, it follows from (3.43) that

g(k) = di(k)Kpac + d(k)Kpac + Opac + INLpac[d(k)]

= [di(k) + d(k)]Kpac + Opac + INLpacld(k)] (3.44)

Equation (3.44) implies that, given the above assumption, the linear characteristic and the nonlinearity
of the quantizer, evaluated from g(k) to [d(k) + dy(k)], are defined only by the employed DAC. Thus, a

residue-calculating quantizer can, in principle, be implemented with the same linearity as that of a DAC.

Obvioudly, it is preferable to match the quantizer's linear characteristic to the DAC'’s linear charac-
teristic?®, in which case |7(k)| < 0.5 LSBpac, but this is actually not a strict requirement, because

mismatch only implies that the magnitude of 7(k) will increase. In other words, assuming that the

%guch that the combined circuit is a quantizing unity-gain element.
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resolving range of the quantizer quantizing (k) is large enough to resolve (k) with the required accu-
racy, (3.44) will hold independent of any nonidealities of the employed quantizer quantizing g(k). Such
residue-calculating quantizers, for which 7 (k) is resolvable in a range larger than +0.5 LSBysc, are
said to employ digital correction. Notice that digital correction does not refer to the use of calibration
techniques, but only that the residue-cal culating quantizer is made somewhat insensitive to nonidealities

of the internally employed quantizers.

Two-Step Flash Quantizers.  Thesimplest residue-calculating quantizer isthe two-step flash quantizer
shown in Figure 3.18 for 7-bit conversion. The residue stage provides a four-bit quantization ¢ (k) of

g(k) with residue r((k), defined with respect to the DAC’s linear characteristic.

g(k)
DAC-0

do (k) - 4-82@8 >
dl(klé d(k)
+ >

Figure 3.18: Two-step flash quantizer.

4-Bit@8
Ko ~ 1/K

4-Bit@1
K1 ~ 1/K

To minimize the magnitude of (%), the first quantizer's nominal gain should match the reciprocal of
the DAC’'s gain K. Asthis cannot be obtained ideally, the magnitude of 7 (k) will exceed 4K . Digital
correction is used to compensate for this problem, which is why the second quantizer is designed with
aresolving range from —8 K to +8 K. Thus, although two 4-bit quantizers are used, this structure only
provides 7-bit@1 quantization.

Roughly speaking, the two-step quantizer will have an INL performance® described by

INLTwo—step[d(k)] = INLpac—o[do(k)] + INLQuant.—1[d1 (k)] + (1/ K1 — K) - dy (k) (3.45)

%Defined with respect to the DAC's linear characteristic.
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The first term in (3.45) represents the nonlinearity induced by calculating the residue 7y(%); the second
term represents the nonlinearity of the second quantization; and the last term represents the nonlinearity

induced by mismatch of the DAC’s gain and the reciprocal of the second quantizer’s gairf’.

The INL of the second quantizer is expected to dominate in (3.45), because it reflects stochastic offsets
in an array of comparators. Thisterm can, however, be suppressed by using the scaling technique shown
in Figure 3.19. Theideais to multiply the estimated residue 7y (k) by a factor of (say) eight, and then

convert it with a quantizer whose gain is the same factor eight smaller.

DAC-0

4-Bit
- it@8 :
K

Quant.-1

(e [ ey

Figure 3.19: Scaled two-step flash quantizer.

The two-step quantizer’s nonlinearity will then be described by

I NLQuant.—l [dl (k)]
8

As expected, the two-step quantizer is now less sensitive to nonlinearity of the second quantizer. The

INLTywo_step[d(k)] = INLpac_o[do (k)] +

+ Again - d1(k) (3.46)

gain error Ag,i, - di (k) is determined by the inaccuracy of the gain from (k) to d; (k), i.e. the term

includes the inaccuracy of the analog-domain gain block.

PipelineQuantizers. Two-step quantizers can be generalized to become multiple-step quantizers, sim-

ply by employing multiple residue stages. Thisis, however, seldom implemented, because of timing con-

7 Although it is a simple gain mismatch, it is indeed a nonlinear error, because d; (k) is a nonlinear (modulo) function of
g(k).
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siderations. Clearly, after the first quantizer is strobed, the circuit must be allowed aminimum amount of
timeto calculate the scaled residue before the second quantizer is strobed. Thus, multiple-step quantizers
will require a significant period of time to perform the quantization, and hence the maximum sampling

frequency will be greatly reduced. Pipelining is an efficient technique to avoid this scenario.

The concept of pipelined residue-calculating quantizersisillustrated in Figure 3.20, which shows afour-
stage 12-bit@1 pipeline quantizer. The key point to notice isthat delay blocks are inserted between each
of the four stages. In the analog domain, the delay elements are implemented as S/H circuits, whereasin
the digital domain they are implemented as latches. Theinput signal g(k) isquantized in four stages, and
as the digital output d(k) cannot be calculated before the fourth quantization is performed, this pipeline
quantizer will cause at least 3 samples of latency. The sampling frequency is, however, independent of

the number of stages, because al the internal quantizers are strobed simultaneously.

The pipeline quantizer shown employs digital correction, because each stage’s residue is resolved in a
range which is 25% wider than strictly necessary. Scaling is used to reduce the quantizer’s sensitivity
to the nonidealities of the second, third, and fourth stage. The INL performance is limited mainly by
the nonlinearity of the first-stage DAC and the gain error of the three-stage quantizer which resolves the
first stage's residue. Optimization of a pipeline quantizer's topology will make its linearity dependent
almost exclusively on the first-stage DAC’s INL. This can be obtained by increasing the resolution of
the first-stage quantizer®®.

Other Residue-Calculating Data Quantizers. The so-called algorithmic quantizers are very similar
to residue-calculating pipeline quantizers (cf. Figure 3.20), where the only difference is that the same
residue stage is used for all of the partial quantizations. Algorithmic quantizers will be significantly
slower than their pipeline counterparts because the conversion of each input sample must be completed

before the conversion of the next sample can be initiated.

Folding-and-interpolating quantizers form a specia class of the two-step-flash quantizers, which is not

based directly on the residue-calculating stage. Although they have some significant advantages, they

%The required resolution is dependent on the technology’s matching performance, but 5-bit resolution is a good starting

point, see [42].
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Figure 3.20: Four-stage pipeline quantizer.
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will not be discussed in detail, because they aim at high-speed rather than high-performance quantiza-
tion. Roughly speaking, the design tradeoffs are similar to those of two-step-flash quantizers.

3.4.3 Introduction to Signal Quantizers

Signal quantizers will always require a minimum amount of oversampling®®, and they will always be of

the residue-calculating type, see Figure 3.21.

g(k) e(k) Smart d(k)
Quantizer

Figure 3.21: Fundamental principle of signal quantizers.

Assume that the digital output signal d(k) has been generated somehow by the smart quantizer. The
residue of this quantization, which for signal quantizers (of historic reasons) will be called the error
signal e(k), is calculated by D/A conversion of d(k) and by subtracting the result f (k) from the analog
input g(k). The fundamental concept, common for all signal quantizers, isthat a smart quantizer selects
the output signal d(k) in such away that the error signal’s signal-band power is made very small, ide-
aly zero. Assuming that the smart quantizer is successful in this aspect, it is thereby assured that the
frequency spectra of g(k) and f(k) are equivalent in the signal band. Further, assuming that the DAC
isided, i.e, f(k) = d(k)Kpac Where Kpac isthe DAC's gain, it follows that the frequency spectra
of g(k) and d(k) Kpac are equivalent, and conseguently that the signal quantizer isidea (in the signal
band) and described by again of K = 1/Kpac.

2t is, however, not quite clear how low that minimum is. Even if it would be possible, it would be meaningless to reduce
the oversampling ratio to (say) 1.5, because cther elements in an A/D converter system will require the OSR to be higher
(cf. Section 3.1.1). An OSR in the order of ten is assumed to be sufficiently low not to impose intolerable restrictions on the

circuit's application range.
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Nonideal DAC Effects Because al signal quantizers are of the residue-calculating type, they are sen-
sitive to DAC nonidealities. Figure 3.22 shows amaodel of the signal quantizer, where DAC nonidealities

are taken into account.

g(k) 9aist (F) e(k) Smart d(k)
Quantizer

-

Offset and
Distortion

INLpac[d(k)] =

Opac

Figure 3.22: Nonidealities caused by the feedback DAC.

As shown in Figure 3.22, the DAC's offset and nonlinearity adds offset and distortion directly to the
input signal g(k). It isthe sum gqgis (k) Which is quantized by the assumed ideal signal quantizer. In
other words, any signa quantizer will be as nonlinear as its internal DAC which is used to calculate
the residue of the quantization. This property is shared by all residue-calculating quantizers, including
residue-calculating data quantizers. A main advantage of signal quantizers is, however, that the error
signal e(k) does not have to be minimized in each sample because the smart quantizer can relocate
the corresponding error power to frequencies outside the signal band. In other words, d(k) can be a

low-resolution signal, and in particular, it can be atwo-level signal.

The use of two-level output signals has for along time been the preferred choice, because the DAC's

INL error thereby will be zero®. In this way, DAC nonidealities will cause only gain and offset errors,

PFor N = 2, the INL(n) consists of only those two points that define the DAC's linear characteristic, i.e.,
INL(1) = INL(2) = 0. The same conclusion aso follows from a simple manipulation of equations (3.28) and (3.31). Al-
though the DAC's static performance will be perfectly linear, certain practical rules must be observed to obtain good dynamic
performance (of the one-bit DAC), which isafundamental requirement in order to obtain good static and dynamic performance

of the quantizer (see[1]).
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whereby the implementation of inherently-linear quantizers is possible.

Nonideal Smart Quantizer Effects. While till allowing the smart quantizer to be somewhat unspec-

ified, the consequences of its potential nonidealities will be considered.

The main purpose of the smart quantizer is to minimize the signal-band power of the error signa e(k).

The success of this operation can be estimated from

P k) = li L *d 3.47
wvnale(9] = Jin | [ 1B P 347

N—oo —f

where E,ps(f) isthe Fourier spectrum of e(k) observed in aperiod of N samples, and where the signal

band is assumed to be the baseband | f| < f;.

Because signal quantizers need not have agood sample-to-sample equival ence between the anal og input
g(k) and the digital output d(k), they are best evaluated using measures of their dynamic performance
(cf. Section 3.3). Thus, signal quantizers are typically described by their signal-to-error ratio (SER),
which can be estimated from

SER =

Pubanalg(k)] A |Gobs(f>|2df] (3.48)

= lim
Prabanale(F)] — Nooe [ [T 1 Bous ()24

where g(k) and e(k) are observed in the same period of N samples.

For every 6 dB increase in the SER, the effective resolution of the signal quantizer is said to increase by
one bit. Proportionality can be assumed for high-resolution quantizers, i.e., a quantizer described by a

SER of 96 dB is said to have an effective resolution of 16 bits.

The SER measure is elsewhere called the quantizer’s signal-to-noise ratio (SNR). This practice has not
been adopted herein because it tends to lead to confusion. The source of e(k) isin genera well known,
and its stochastic natureis, at best, only pseudo-random. Even when the smart quantizer isdesigned such
that e(k) does not include any detectable harmonics of g(k) (see [43]), the spectral composition of e(k)
is quite likely to be tonal. Furthermore, the time-domain equivalent of the signal-band part of e(k) can

have apeak-to-peak value whichissignificantly larger than 1 L SB, defined with respect to the quantizer’'s
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effective resolution® (see Chapter 3 in [1]). These problems are most serious when d(k) is a single-bit
signal, in which case the smart quantizer should be designed for a much better SER performance than
the SNR performance (limited by device noise). Although truly-stochastic noise cannot mask that the
error signal istonal, this approach tends to make such quantizers more suitable for critical applications

(e.g. audio).

Design of Smart Quantizers. This section will discuss some of the properties that the smart quantizer

must possess, and how it can be implemented.

Asdiscussed in Section 2.3, the accuracy with which asignal’s spectral composition can be estimated is
highly dependent on the duration of the observed signal. Thus, to effectively minimize the signal-band
power of e(k), the smart quantizer must choose each sample of d(k) on the basis of e(k) observed for

many (typically several thousand) samples. In other words, the smart quantizer must have memory.

In order to alow the error signal e(k) to be nonzero, the smart quantizer should minimize only the
signal-band spectral components of e(k), i.e., it must alow e(k) to have substantial out-of-band power.
Equivalent to the band-pass-filter estimation method (see page 22), afilter H(f) is used to focus on the
spectral components of interest, i.e., the signal-band spectral components. The requirement of a long
observation time, combined with the preference for simple implementations, leads to the conclusion that

the filter should be of the infinite-impulse-response (I1R) type.

Smart Quantizer

Figure 3.23: Fundamental elementsin a smart quantizer.

Figure 3.23 shows the basic implementation of a smart quantizer, where the error signal e(k) isfiltered

*In other words, the signal-band part of e(k) is often described by a large peak-to-rms ratio (it includes spikes), which
reflects that e(k) is not modeled well by a Gaussian stochastic process.



34. QUANTIZER TOPOLOGIES 75

by thefilter H(f), and a“smart stage” evaluates thefilter's output signal v(k) (and possibly more) in the
process of choosing the digital output signal d(k). By noticing that V (f) = H(f)E(f) and revisiting

the measure for the smart quantizer’'s performance (3.47), the implementation can be evaluated using

) 1 fo )
Jim | [ Bas0P

- . 1 To |Vobs(f)|2
= dm vn [ e 349

[
E

Pinband [6(k)]

Assuming that thefilter H(f) has some large minimum signal-band gain
Hpin = min |H(f)| (3.50)
If1<fo
it follows that (3.49) can be evaluated by the inequality

lim oo | 75 Vos(1)12dF
I{min2
Pinbana[v (k)]
I{min2

]Dinband [e(k)] <

(3.51)

Equation (3.51) reflects that in order to minimize the signal-band power of e(k), one could use a filter
H(f) with alarge signal-band gain and attempt to keep the signal-band power of v(k) small (or at
least finite). These conditions will, for example, be fulfilled if the feedback loop is stable and d(k) is
generated simply by quantizing v(k). Thismost typical structure is shown in Figure 3.24.

Magic Quantizer

N-bit@1 :
H(f) 1/I?DAC -

N-bit@1

Kpac

Figure 3.24: Typical implementation of signal quantizers.

In Figure 3.24, the quantizer and the DAC in the feedback loop are (for convenience) assumed to have

reciprocal gains. This assumption is useful, because the smart quantizer’s properties are not altered if
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the filter and quantizer are scaled by reciprocal coefficients; also, the performance measures (Equations
(3.49) and (3.51)) are not affected by this assumption. Thus, assuming that the resolving range of
the internal quantizer is sufficiently wide, the system'’s stability can be evaluated using any traditional
stability criteria, eg. Nyquist's Stability Criterion. The traditional design approach is, however, to
design

NTF(f) = 1/Kpac

as a high-pass filter®? with some pre-calculated characteristic, for example a Chebychev Type-Il high-
pass-filter response. NTF(f) is called the signal quantizer's noise transfer function, because it deter-

mines the output-referred linear signal processing of the internal quantizer’s truncation errof®,

Although Figure 3.24 shows the most common implementation for signal quantizers, it is not the op-
timal way to implement the smart quantizer. Obviously, it is not an optimal desigr®* when g(k) must
be included in e(k) and filtered before it can appear in the output d(k). An improvement can be ob-
tained simply by directly informing the smart quantizer about g(%), so that it can be taken into account

immediately. Figure 3.25 shows a simple signal quantizer implemented according to this principle.

Smart Quantizer

N-bit@1

Kpac

Figure 3.25: Improved implementation of signal quantizers.

Figure 3.26 shows the same signal quantizer as shown in Figure 3.25 redrawn. It is included to shed

%More generally, as afilter that suppresses the signal-band.
33Which too often is modeled as noise (cf. the discussion on page 38).
*Because the object isto minimize e(k).
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some light on the fundamental operation; compare Figures 3.17, 3.25, and 3.26.

Figure 3.26: Model of the signal quantizer shown in Figure 3.25.

It is worthwhile to notice that the topology shown in Figure 3.25 also assures that the signal transfer

function becomes independent of the filter H(f)

_ F{d(k)}  1/Kpac[l + H(f)] o1

B f{g(k)} B 1+ [KDAC/I?DAC]H(]E) N KDAC (353)

STF(f)

The advantage of designing the signal quantizer as shown in Figure 3.25, rather than using the traditional
topology shown in Figure 3.24, is only significant if g(k) has substantial sample-to-sample variation.
That is, however, always the case when the oversampling ratio is low, which is the general assumption

in this work.

This concludes the introduction to signal quantizers. They will be discussed in greater detail in Chapter 4.
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Chapter 4

State-of-the-Art Signal Quantizers

This chapter will provide an overview of state-of-the-art techniques used for the implementation of
signal quantizers. The advantages and shortcomings of the techniques will be discussed and serve as
background for the discussion in the subsequent chapters. The reader is assumed to be familiar with

Chapters 2 and 3, especially the introduction to signal quantizers provided in Section 3.4.3.

First, it will be explained why single-bit signal quantizers are not suitable for high-resolution wide-
bandwidth quantization. Aspects, such as stability and technology constraints, will be considered to

reach this conclusion.

Second, signal quantizers implemented in the so-called MASH topology will be discussed. In princi-
ple, this technique can improve the performance to an amost unlimited extent, but in reality, circuit

imperfections will significantly limit the achievable improvement.

Third, it will be argued that mismatch-shaping DACs facilitate the implementation of linear multi-bit
signa quantizers. In this way, the desired high-resolution wide-bandwidth signal quantizers can be

implemented. The basic techniques will be described, and some shortcomings will be identified.

79



80 CHAPTER 4. STATE-OF-THE-ART SIGNAL QUANTIZERS

Terminology. The remaining part of this work will discuss several topologies for the implementation
of data converters' that attempt to minimize the signal-band power of nonlinear errors. Figures 3.24
and 3.25 illustrate only the most basic principle for such signal quantizers, and to distinguish these
topologies easily from the new topologies to be discussed, it is convenient to have a separate name for

these two structures.

For historic reasons, signal quantizers of the type shown in Figures 3.24 and 3.25 will be called delta-
sigma (AX) quantizers’. If the digital output signal d(k) has a resolution of N bits, the structures
are said to be N-bit delta-sigma quantizers. Notice that N refers to the actual resolution, i.e., not the

effective resolution, which typically is much higher (cf. page 73).

4.1 Single-Bit Delta-Sigma Quantizers

A single-bit DAC can provide only two output levels. Assuming that these two levels are time-invariant
and that dynamic errors are avoided®, such DACs are inherently linear. Thisis because any static char-
acteristic S(n) consisting of only two elements will define a straight line (the linear characteristic) with
respect to which the DAC has an ideal static performance. Aswith any other DAC, single-bit DACs are

subject to linear errors (offset and gain errors), but such errors are generally tolerable.

General Structure of a Delta-Sigma A/D Converter System. Figure 4.1 illustrates the implementa-
tion of atypical delta-sigma A/D converter system. The AXY. quantizer employs asingle-bit DAC in the
feedback path, which ensures that the quantizer is not subject to nonlinear DAC errors (cf. page 72).

In brief, the operation can be described as follows. The analog front end filters and samples the input

signal a(t) and provides the discrete-time analog signal g(k). Thesingle-bit A quantizer converts g(k)

1In principle, such data converters should be called signal converters, but this name has not been widely adopted.
2Digital circuits implemented in the same topology are called delta-sigma modulators. Digital delta-sigma modulators are

used to reduce the resolution of a signal while preserving its signal-band spectral composition.
3Thisis feasible for switched-capacitor implementations, for which good circuit techniques have been developed. Similar

techniques for current-mode DACs are under devel opment.
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Figure 4.1: A/D converter system based on asingle-bit AY. quantizer.

into d(k) in such away that the signal-band spectral composition of the two signals are linearly related.
Outside the signal band, the spectral compositions will differ substantially. A digital filter will reject
the out-of-band spectral components of d(k), thereby generating a highly oversampled signal, which is
decimated to a signal-band-equivalent signal u (k) sampled at a much lower sampling frequency.

Evaluation of the Topology. The main advantages of the approach shown in Figure 4.1 are that the
analog front end is simple to implement, and that the quantization process is inherently linear despite
possible analog circuit imperfections. The analog portion of the system is highly oversampled; hence
the anti-aliasing filter can be implemented as a simple filter of low order (cf. Equation (3.5)). The AX
guantizer isasimple circuit, the performance of which depends mainly on the linearity of the input-stage

integrator used for the implementation of the loop filter H(f) (see [43]).

The need for the somewhat complex digital multi-rate filter is a disadvantage, but as the layout density
has increased and the power consumption of digital circuits has been reduced over time, this tradeoff
for avoiding complex analog circuitry has become quite acceptable. Hence, single-bit AY ADCs are
suitable for the implementation of many high-resolution applications in modern technologies, which

typically are optimized for the design of digital circuits.

4.1.1 Obtaining and Preserving Stability

Useful stability criterions for the closed-loop operation of single-bit AY. quantizers are very hard to

derive. This problem is caused by the single-bit loop quantizer (the internal single-bit data quantizer),
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which is so nonlinear that its linear characteristic is not even defined (cf. Section 3.1.4).

A single-bit data quantizer isjust a polarity detector that assigns one of two integers to d(k). Hence, if
theinput signal v (k) hasasmall standard deviatiorf' (relative to the difference of the two levels provided
by the DAC), the quantizer is, in a sense, described by a large gain (relative to 1/Kpac); Whereas
if the standard deviation of v(k) is large, the quantizer's “gain” is low. Despite this highly nonlinear
property of single-bit data quantizers, many attempts to analyze single-bit AY. quantizers' stability have
been based on the model shown in Figure 4.2, where it is assumed that ¢(k) is an externally-applied
uniformly-distributed white-noise signal, and where the single-bit loop quantizer’s gain is assumed to be

1/Kpac, i.e., independent of v(k).

Figure 4.2: Linear model, which often has been used to model single-bit AY. quantizers.

Not surprisingly, the linear model has proven to be so oversimplified that in many situations it is almost
useless. An example in which the model leads to the incorrect conclusion is the closed-loop system’s

stability evaluated using Nyquist's Stability Criterion.

Figure 4.3 shows a correct nonlinear model of the closed-loop system, where ¢(k) is modeled as a
deterministic function 7 of v(k). Without going into detail, notice that stability should be construed
as v(k) having the property of being bounded in magnitude. The stability properties are often ana-
lyzed/evaluated by considering a pseudo-probability-density-function (PPDF) description of v(k), i.e.,
a histogram of v(k) obtained from a finite-duration simulation. “Stability” is indicated if most (say
99.9%) of the PPDF[v (k)] is well within the single-bit loop quantizer’s resolving range (cf. Figure 4.3),

but it is not an accurate measure that will guarantee stability. The problem is, in part, complicated by

“4The use of this measure should not be construed to be that v (k) is a stochastic signal; it is not.
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Resolving Range
Figure 4.3: Nonlinear system modeling the closed-loop operation of asingle-bit AY quantizer.

the property that the PPDF[v (k)] is affected by the input signal g(k), which implies that stability only
can be obtained if the input signal is restricted to a certain range. The main complication is, however,
the deterministic correlation of v(k) and q(k); if v(k) attains large values for some reason in a short
period of time, the deterministic relationship 7; implies that ¢(%) aso will attain large values, which
may increase v(k) and thereby possibly initiate a positive-feedback sequence that leads the AX quan-
tizer to instability. The problem isindeed very complex, and it is perhaps best described using chaos
theory [44]. Several papers discussing the stability issue have been published; the interested reader is
referred to [1] as a starting point.

Design of Stable Single-Bit Delta-Sigma Quantizers. A simple rule has been experimentally found
for the design of single-bit AY quantizers. The rule, which was first stated by Lee [45], claims that a
single-bit AY. quantizer will be stable if its noise transfer function (3.52) has a maximum gain of less

than 1-5/KDA01 i.e., if

1
SN 41
Tex 1+H(f)‘< 5 (41)

Lee's Rule (4.1) cannot be proved; and in fact, some single-bit AY. quantizers designed according to it
are quite unstable. However, most single-bit A3 quantizers that fulfill Lee’s Rule tend to remain stable

for asubstantial number of samples (millions), so the rule should be used only with caution.

A sound design approach isto:

SRelative to the resolving range.
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e design a AX quantizer according to (4.1),
e simulate the AY. quantizer extensively and re-design it if necessary, and

e assure the stability by making the loop filter nonlinear, for example as described bel ow.

A Toolbox [46] can be used to simplify the first two steps of this design procedure.

Nonlinear Loop Filters. The stability of a single-bit AY quantizer can be assured by incorporating
simple nonlinearities in an otherwise linear loop filter H(f). Linear loop filters can be implemented
in several ways, but the following discussion will consider only the fourth-order structure shown in
Figure 4.4. Thistype of loop filter isagood choice for analog AY: quantizers [43], and the reader should

find no difficulty in generalizing the discussion to other filter orders or structures.

(o]
Integrator—1 Integrator—2 Integrator—3 Integrator—4

-1 -1
+ z 1 + z 1
1—2—1 1—2—1 + 1—2-1 1—2—1
+ +
N -7

Figure 4.4: Example of aloop-filter structure.

The loop filter's poles, which will become the noise transfer function’s (3.52) zeroes, will be located on
the z-plane unit circlé® at angles (frequencies) determined by the coefficients ~ that are used to tune the

two resonators. The feed-forward coefficients «; are used to control the noise transfer function’s poles.

A AY quantizer, which is based on this loop filter, will be stable only if the output of all integrators
remain bounded. By simple inspection of the loop filter's topology, it should be observed that the output

of each integrator isafunction of e(k) only.

The z-plane refers to the z-transform, i.e., the Fourier transform, for which the variable substitution z = ¢~/ Ts s used.
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Preserving stability is somewhat comparable to backing atruck with as many trailers as the number of
integrators less one, where the output of each integrator is modeled as the orientation of each trailer.
Obvioudly, backing the trailer train is a difficult task; hence instability is quite likely to occur. The
visualization corresponding to Lee's Rule is that the trailers' lengths must be an increasing function of
their distance from the driver. Although this model is somewhat inconsistent mathematically, it may aid

the understanding of how and why the following very efficient stabilization technique works.

The stabilization technique is quite simple. If and when instability occurs, i.e., if v(k) becomes a se-
guence of large values, the last-stage (the fourth) integrator is reset. If this action does not restore
stability, then the two last integrators are reset shortly afterwards. This process is continued (more and
more integrators are reset) until stability is restored. In practice, it will never be necessary to reset the

two first integrators, and the effective noise shaping will always be of at least second order .

Achievable Performance. Theimplication of Lee's Rule may not be obvious, but a study will show
that the OSR that is required to obtain a signal-band Signal-to-quantization-Error-Ratio (SER) of (say)
100 dB is only a slowly-decreasing function of the loop filter's order. Thisisillustrated in Figure 4.14
in [1], where the derivation also can be found. Table 4.1 summarizes the result expressed as the OSR
required to obtain 100 dB SER. Clearly, 10 times oversampling is not enough to achieve this level of
effective resolution when using a single-bit AY quantizer with a loop filter of any reasonable order.
In fact, at 10 times oversampling, the SER will be around 40 dB for all well-designed single-bit A

quantizers of high order.

Filter Order 1 213/ 4]5|6] 7|8
OSR >1000 [ 220 | 90 | 56 | 45| 36| 32| 30

Table 4.1: OSR required to obtain 100 dB SER for single-bit A quantizers.

"The term “noise shaping” refers to the filtering performed on g(k) in the linear model, Figure 4.2. The effective order of
noise shaping is (in this thesis) defined as the maximum number of signal-band unit-circle poles the linear filter can have while

obtaining a bounded outpuit.
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4.1.2 Bandwidth Limitation

The signal bandwidth equals the sampling frequency divided by twice the OSR (3.3); for this reason
wide-bandwidth A quantization requires either a high sampling frequency or alow OSR.

As discussed above, the stability properties of single-bit AY. quantizers restricts the choice of the loop
filter such that high-resolution AY. quantization cannot be obtained using these quantizers at less than
approximately 30 times oversampling. Furthermore, for high-order AY quantizers, the digital multi-rate
filter must have a narrow transition band, which drastically complicates its implementation. At high
speed, the power consumption of the digital circuitry becomes more of an issue, so medium-order A

guantizers operating at an OSR of about 50 will typically be preferred.

Increasing the sampling frequency implies an increase in the power consumption of both the analog and
digital circuitry. Assuming that the AY. quantizer is implemented as a switched-capacitor circuit in a
modern technology?, the sampling frequency is hard to increase beyond 20-50 MHz, even if the power
consumption is allowed to be aslarge as 100-500 mW. The speed/power tradeoff is of course dependent
on the technology of choice, but improvements from this source do not seem to keep pace with market
requirements. It is unlikely that high-performance switched-capacitor circuits that are implemented in

standard technologies will be clocked much faster than (say) 100 MHz in the coming few years.

By combining the estimates made above, it follows that the bandwidth of ahigh-resolution single-bit AY
ADC isunlikely to exceed 1 MHz within areasonable time frame. Furthermore, to obtain a competitive
advantage, bandwidth improvements should be obtained either by lowering the OSR or by increasing

the sampling frequency without increasing the power consumption or the production cost.

Continuous-Time Loop Filter. Aninteresting approach, which can be used to increase the sampling-
frequency/power-consumption ratio in almost any technology, is to implement the A quantizers with
continuous-time loop filters. These so-called continuous-time (CT) AX quantizers have several ad-

vantages (noise, power, and bandwidth), but also substantial drawbacks; they are very sensitive to the

8As of 1998.
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dynamic errors of the DAC in the feedback path, and particularly they are very sensitive to clock-jitter-
induced errors (cf. page 52). Hence the resolution reported thus far has been quite modest. Some exotic
continuous-time AY: quantizers have been implemented in highly specialized technologies and operated
at sampling frequencies in the GHz range [47]. Such high-speed AX. quantizers will obviously require
the use of extremely fast and power-consuming digital circuits. The SNR performance reported was
approximately 30 dB less than the theoretical SER, which indicates that clock-jitter and other dynamic

errors were the limiting factors.

4.2 MASH Topology

The limiting factor of single-bit A quantizers operating at low oversampling ratios is that the loop
filter's H(f) minimum signal-band gain cannot be increased beyond acertain level without encountering
stability problems; consequently, the error signal’s e(k) inband spectral power density cannot be lowered
to less than a certain minimum. Now referring to the nonlinear model shown in Figure 4.3, it can easily

be shown that d(k) = f(k)/Kpac can be calculated from

_ 1 H(f) 1 1
bl = G(f)KDAC 1+ H(f) Q(f)KDAC 1+ H(f)
= G(f)STF(f) + Q(f)NTF(f) (4.2)

where the two terms represent the signal and the error spectra, respectively. Although Q(f) often has
an approximately uniform spectral power density in the entire frequency spectrum (which iswhy it is
often modeled as white noise) it should be understood that it is not noise, but merely the single-bit loop
quantizer’'s truncation error. Because ¢(k) is not noise, it can be estimated, A/D converted, filtered by a
digital filter that imitates NTF(f), and the result subtracted from d(k) to compensate for the error term
Q(f)NTF(f) in (4.2). This so-called MASH?® quantizer is shown in Figure 4.5.

9The name MASH is claimed to be an abbreviation for Multi-Stage Noise Shaping, but it is also claimed that the name was

chosen from a popular TV show (for whatever reasons).
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Figure 4.5: MASH-topology signal quantizer.

4.2.1 Analysisof the MASH Topology

The MASH topology includes a traditional residue stage (cf. Figure 3.17) for the calculation of the
residue of the single-bit quantization of v(k). Asdiscussed in Section 3.4.2, the gain of aresidue stage's
guantizer is determined uniquely by the gain Kpac_o Of the residue stage's DAC; consequently, the
single-bit loop quantizer will — by definition —have again of 1/Kpac—2. This definition does not alter
the single-bit AY quantizer’s stability properties, but it uniquely determines the noise transfer function
NTF(f), by which g(k) is filtered in its appearance in d(k). The noise transfer function is calculated
from

NTR(f) = e

Kpac-2

4.3

Estimation of the Residue. Because d(k) is a single-bit signal, the residue, —q(k), of the single-bit
quantization of v(k) can be calculated with very good accuracy (except for an unimportant offset). A

multi-bit quantizer'® A/D converts —q(k), and the result d, (k) is filtered by a digital filter NTF(f) and

©0riginally, this quantizer was a single-bit AX quantizer, but the generalization to include data quantizers is trivial, and a

high-resolution, say pipeline, quantizer istypically a better choice [48].
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then added to the single-bit output d(k).

Nonlinearity of the Multi-Bit Quantizer. Nonlinearity of the multi-bit quantizer isonly aminor issue.
Nonlinearity will cause an error in d,(k), which contains harmonic distortion of ¢(k). For this purpose,
q(k) can be modeled very well as awhite-noise signal, and hence ¢, (k) will include a white-noise error
with a total power determined by the linearity of the quantizer, i.e., typically 40-60 dB less than the
power of ¢(k). Considering that I\/I'ﬁ:(f) will efficiently suppress this error in the signal band, it will be
understood that the quantizer’s nonlinearity will not be the limiting factor unless more than 40-60 dB

improvement (relative to Equation (4.2)) needs to be obtained.

Gain Error of the Multi-Bit Quantizer. Using the same kind of argument as above, it can be under-
stood that a slight inaccuracy of the multi-bit quantizer's gain is acceptable. Assuming that K pac—_2
matches Kpac-—o With (say) —40 dB relative accuracy, it follows that the error term Q(f)NTF(f) in
(4.2) is suppressed by 40 dB, which would be a significant improvement relative to the performance

when deomp (k) = 0.

Mismatch of Transfer Functions. Mismatch of the single-bit A3 quantizer’s noise transfer function
(4.3) and the digital filter I\TT\F( f) meant to implement it** is the only (but highly) critical factor in the
MASH topology.

The error term in the digital output dyiasp (k) can be described as

B 1/Kpac—2 _ 1 NTF
Durarl ) = QL) T Fone NTF(f)] (4.4)

Assuming (for the reasons discussed above) that Kpac_2 and K DAC—2 Mmatch, the error term can be

simplified to
Q(f) 1 JTE
Derror ~ — — NTF 4.5
(f) Roncs |1+ 22 H(f) (f)] (4.5)

M Except for the gain factor 1/ Kpac_ 2, which isimplemented by the multi-bit quantizer
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In general, Kpac and Kpac_o Will have the same nomina value, therefore the digital filter I\T'ﬁ:(f)

will be designed to have the same transfer function as the nominal value of 1/(1 + H(f)).

Idedlly, the difference in Equation (4.5) will be zero. The success of the MASH topology isin general

evaluated as the resulting improvement of the SER, which can be estimated as

ff INTE(f)|2df
5 (4.6)
To 1 _ NTT
TN b corvemprmrs RLTERTIyY NTF(f)| df

Considering that the numerator in (4.6) is a very small number, it follows that the difference in (4.5)

must be very small to obtain a significant improvement.

Minimization of the denominator of (4.6) is, in theory, a matter of matching two rational functions, one
having slightly inaccurate coefficients due to the imperfections of the analog circuitry. Theimperfections
will manifest themselves as a dislocation of the noise transfer function’s poles and zeroes, where each
didocation will result in anonzero term in the denominator of (4.6). Without going into great detail, the
generally accepted™ conclusion isthat the achievable improvement becomes less and | ess as the order of

the loop filter isincreased; hence the MASH topology is mainly of interest for low-order AY: quantizers.

Stability concerns are actually another reason why the MASH topology is useful for low-order AX
guantizers only. High-order A quantizers will generally require that nonlinearities be incorporated in
the loop filter (cf. page 84), and it will be very complicated to incorporate the “inverse’ nonlinearitiesin

I\TT\F( f) to cancel the difference in (4.5).

Typical Design Approach. For the reasons discussed above, MASH quantizers are almost always
based on a second-order first-stage AY. quantizer. The classical design technique isto choose the nomi-
nal valueof H(f) as

~1(9 _ 1 ,
H(f) — %, oy = 27 ST (4.7)

2according to the author's own survey, this is the general understanding of most experts. Because a much more robust
technique has been developed (which is discussed in the third part of this thesis), the author has not directly attempted to

optimize the design of MASH quantizers.
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in which case the digital compensation filter is a simple second-order FIR filter:
NTF(f) = (1 —271)?, z=e?™/T (4.8)

This design, however, does not fulfill Lee’s Rule (4.1), and hence the single-bit loop quantizer’s input
signal v (k) will significantly exceed the quantizer’s resolving range. Although the AY quantizer will
remain stable!3, this overload operation implies that the multi-bit quantizer must have a resolving range
that is significantly (15-20 dB) larger than what normally would be expected. The corresponding draw-
back is that the system becomes the same 15-20 dB more sensitive to errors caused by nonlinearity of
the multi-bit quantizer, which therefore must be designed to have a quite high performance. If the OSR
islow, say 10, the digital compensation filter (4.8) will only suppress signal-band white-noise errors by
about 40 dB, which (because the single-bit loop quantizer is overloaded) implies that the multi-bit quan-
tizer must have the same linearity and resolution as the overall system less 3-4 bits. A main advantage
is, however, that the multi-bit quantizer's nonlinearity will not cause harmonic distortion of the input

signal, but instead, a colored pseudo-noise error.

Improved Second-Order MASH Quantizer? Although it has not yet been attempted™, it seems that
a substantial advantage can be obtained smply by scaling H (f) with a factor (say 0.25) or change it
otherwise to conform with Lee's Rule, in which case the multi-bit quantizer can be designed to have a
smaller resolving range. Because another much improved topology has been discovered (presented in

the third part of thisthesis), this approach has not been analyzed thoroughly.

Conclusion. MASH quantizers are, in principle, wonderful signal quantizers; but in reality, they suffer

greatly from imperfections of the analog circuitry.

Didlocation of the noise transfer function’s poles and zeroes require the quantizer to be of low order. If
the oversampling ratio is fairly high, a better performance can generally be obtained using a simpler-to-

implement higher-order single-bit AY. quantizer. If the oversampling ratio is low, the MASH quantizer

135econd-order quantizers will always be stable, but they are not necessarily well-behaved, i.e., although v(k) will be

bounded, it can attain large values.
¥ asfar asthe author is aware.
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will become somewhat sensitive to nonlinearity of the multi-bit quantizer, which possibly can be avoided

by scaling the loop filter properly.

Some successful implementations of wide-bandwidth MASH quantizers have been reported [48,49], but
the effective resolution is barely 15-16 bits. This resolution is probably close to the limit of what can
be obtained, because these quantizers were designed with great care by highly-qualified designers, who

employed many circuit tricks to make the analog circuitry behave asideally as possible.

In an attempt to improve the cancellation of the truncation error, a technique to adaptively adjust the
digita compensation filter has been developed [50]. However, the effective resolution obtained thus far

does not exceed 12-13 bits at 8 times oversampling.

4.3 Multi-Bit Delta-Sigma Quantizers

To obtain inherent linearity, A quantizers have traditionally been restricted to have a single-bit output
signal. The low resolution is, however, associated with numerous disadvantages, among which are
the quantizer’s poor stability and the large magnitude of ¢(k). Section 4.4 will discuss the so-called
mismatch-shaping D/A converters, which can provide an inherently-linear multi-bit D/A conversion
with avery good signal-band performance. Mismatch-shaping D/A converters should be considered asa
major breakthrough, because they facilitate the use of multi-bit AX: quantizers, which (in the absence of
DAC errors) can be designed to have a much better performance than their single-bit counterparts. The

following discussion of multi-bit AY. quantizers refers to Figure 3.25.

Brute-Force Improvement. Because the magnitude of the multi-bit loop quantizer’s truncation error
is inversely proportional to the resolution of d(k), every doubling of the resolution will result in 6 dB
improvement of the SER. Hence, assuming that the loop filter is designed in the same way as for a
single-bit AY quantizer (cf. page 83), d(k) will need to be of 10-bit resolution to obtain 100 dB SER
at 10 times oversampling!®. Fortunately, significantly better results can be obtained if the loop filter is

re-designed.

15As discussed in Section 4.1, single-bit AY quantizers of any high order will provide a SER of only about 40 dB.
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4.3.1 Stability Properties

A main advantage of multi-bit AY quantizers is that their stability properties are much better than for
their single-bit counterparts, and hence their design need not be restricted as much as proposed by Lee’'s
Rule (4.1).

In essence, NTFyox = max; |1/(1+ H(f))| isthe main factor that controls the rms value'® of v(k), and
Lee'sRuleis merely an empirical estimate of when v (k) is expected to be small enough not to overload
a single-bit data quantizer. However, for a multi-bit AX quantizer, where it will be assumed that the
input signal g(k) is somewhat smaller (say by +5 LSB) than the loop quantizer’s resolving range, v (k)
may have significant fluctuation (+£5 LSB) without causing overload of the loop quantizer, and hence

the loop filter can be designed to have alarger NTHRy .« than imposed by Lee's Rule.

An Example. Figure 4.6 shows the sinusoid input signal ¢(k) and the staircase output signal d(k) for
two quite different designs of a6th-order 17-level AY quantizer operating at eight times oversampling’.
The upper plot corresponds to an aggressively-designed quantizer, for which NTR,,,x = 8, whereas the

lower plot corresponds to a more conservatively-designed quantizer, for which NTR, . = 2.

Clearly, d(k) ismore“busy” for the aggressive design thanitisfor the conservative design. This property
isin good agreement with the prediction made above. Although the total power of the error signal e(k)
is larger for the aggressive AY. quantizer, it is actualy 41 dB less is the signal band (assuming eight
times oversampling) than for the conservative AY. quantizer. However, Figure 4.6 indicates that the
aggressive AY. quantizer’'s input signal should be considered to be full-scale, whereas the conservative
AY. quantizer supposedly will remain stable for inputs that are as much as 5 dB large®. Hence, “only”

36 dB improvement is obtained by using the aggressive loop filter.

®More precisdly, the standard deviation of the PPDF[v (k)] (cf. Section 4.1.1).

OSR = 8 isused because the Figures are based on simulations that constitute a partial reproduction of work performed by
Richard Schreier [2].

8The quantizer becomes unstable when the loop quantizer’s resolving range (8.5 LSB) is exceeded.
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Figure 4.6. Simulation result for two 6th-order multi-bit AY. quantizers. Top: an aggressive design.

Bottom: a more conservative design.
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Achievable Performance. The advantages that can be obtained by increasing the value of NTFR, . are
discussed in [2], in which Figure 5 illustrates the SER performance that can be obtained at eight times

oversampling using quantizers of various orders and for various values of NTRy,,x.

The result is summarized here in Table 4.2. SER;1.sp is the SER obtained when the input is a sinusoid
with a peak-to-peak magnitude of 1 LSB. The minimum resolution of d(k) must be approximately
6+/Pay[v(k)]/ LSB to assure stability. In this limit, the considered 1- LSB input signal g(k) is full-
scale, and the loop quantizer’s resolving range is used mainly for fluctuations in v(k). If d(k) is of
higher resolution, the wider resolving range can be utilized to increase the input signal’s magnitude,
which will result in a 6 dB improvement for every factor of two increase in the magnitude of g(k) (cf.

Equation (4.9)).

Quantizer Order (OSR = 8) 2134|567 8

SER;1sp/dB for /Pay[u(k)] < 1LSB | 38|49 |56 |62|65| 68 | 70
SER1.sp/dB for /P, [v(k)] < 1.5LSB || 38 |52 | 62 | 70| 76 | 81 | 85
SER;1sp/dB for /Pay[v(k)] <2LSB || 38|52 |65| 74|82 | 88 | 94
SER1.sp/dB for \/Pay[v(k)] <3LSB | 38|52 |65| 78|87 | 95 | 101
SER1.sp/dB for /P, [v(k)] < 5LSB || 38|52 | 65| 78| 91 | 100 | 108

LSB

[ Pay
SER ~ SER;1s + 6 dBlog, | N — (67[”(’“)]” (4.9)

Table 4.2: The SER performance that can be obtained from a N-level A quantizer operating at eight-

times oversampling.

Aswill be discussed in the Section 4.4, mismatch-shaping D/A converters will typically be of fairly low

resolution, say 4 to 5 bits or even less.

Consider adesign where the resolution of d(k) is5 bits and the loop filter is designed such that

v/ Pay[v(k)] =5LSB
Although the AY quantizer’s resolving range is quite small (afew LSBs), the maximum SER can till

be made as high as 108-120 dB (using a high-order loop filter). However, a characteristic of this design
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isthat the AY quantizer's feedback signal f (k) ismany timeslarger than theinput signal g(k), therefore,
the system’s performance is very sensitive to the feedback DAC's nonlinearity and noise performance.
In general, this should not be considered a good design; usualy it is preferable to have a (relatively)

larger resolving range for g(k), even if alower SER is an unavoidable tradeoff.

Conclusion. A fluctuation in v(k) of about +3+/Py[v(k)] is expected, and the loop quantizer's re-
solving range must be at least this wide to preserve stability. An increment in the resolution of d(k)
beyond this minimum will affect (improve) only the A quantizer’s resolving rangé®, and (as for any
other quantizer) the maximum SER will improve 6 dB for every doubling of the system’s resolving

range.

The SER is not the only design aspect that needs to be considered, and the circuit designer should, in
general, choose an entry in Table 4.2, for which the feedback DAC's resolution [V is at least twice as
large as 6+/P.y [v(k)]. For example, if the feedback DAC's resolution is (say) N = 16, then the loop
filter should be designed according to the second entry row in Table 4.2. The AY. quantizer’s resolving
range will be approximately (16 — 9) LSBs = 7 L SBs, therefore, the second term in Equation (4.9) will
be approximately 17 dB. Accordingly, to obtain a 100 dB SER, the loop filter must be of at least the 8th

order.

Because the resolution N in general will be low, the second factor in Equation (4.9) will be less than 30

dB, and hence higher-order?® loop filters will be required to obtain 100 dB SER performance.

For continuous-time implementations, the feedback DAC is usually a current-mode DAC, and clock
jitter is another (important) reason not to use a loop filter for which 6,/ P,y [v(k)]/ LSB is too close to
N (cf. Section 3.2.3).

®The AY quantizer's resolving range can be estimated as NV - LSB — 61/ Pay [v(k)] (cf. Equation (4.9)).
2Fifth order will be the minimum, and 6th- and 7th-order loop filters will be typical.
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4.4 Mismatch-Shaping DACs

Asdescribed in the previous section, many advantages can be obtained if an inherently-linear more-than-
two-level DAC isavailable. Considering that the multi-bit DAC will be used as the feedback element in a
multi-bit AY quantizer, it should be understood that it need not beideal in the entire frequency spectrum;
the A quantizer’'s performance is fairly insensitive to errors outside the signal band, and hence (errors
cannot generally be avoided) the DAC should preferably optimize only the signal-band performance.
DACs that have this characteristic will in the following be referred to as mismatch-shaping DACs.

Mismatch-shaping DACs assume that their output will be evaluated as a signaf*, and they attempt to
keep the signal-band part of the generated signal free of errors by allowing mismatch-induced errors to
occur at other frequencies. Accordingly, mismatch-shaping DACs and signal quantizers alike are based
on the same fundamental philosophy, namely, that the error signal is applied to a filter that has high
gain in the signal band, and that the system is controlled such that the filter's output remains bounded in
magnitude.

A main difference between signal quantizers and mismatch-shaping DACs is in the way they calculate
the error signal. Signal quantizers make use of a supposedly-ideaf? DAC to calculate the error signal

(cf. Figure 3.21). Mismatch-shaping DACs, on the other hand, cannot use the same technique because
that will require the existence of an ideal reference DAC, as shown in Figure 4.7. In the absence of
an ideal reference DAC, it will be impossible to calculate and filter the mismatch-shaping DAC's error
signal m (k) in the analog domain, but nevertheless (asit will be explained in the following) it is actually

possible to use digital techniques to control certain properties of the error signal m (k).

ZMeaning that the output is eval uated by its spectral composition, and not sample by sample.
22The performance is evaluated with respect to the signal band only.
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Driving
DAC

Figure 4.7: Conceptual mismatch-shaping DAC.

4.4.1 Estimation of the Error Signal

In the following, it will be assumed that the DAC is implemented in the topology shown in Figure 4.8,
where a digital front end separates d(k) into a set of signals 4 (k) such that

d(k) =S bi(k) (4.10)

The composite DAC'slinear-characteristic gain K; and offset f, . are defined as shown in Figure 3.15.
When calculated with respect to this linear characteristic, the DAC’s nonlinearity m (k) = INLg[d(k)]
can be expressed with respect to the characteristics of the individual DACs asfollows:
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bo (k) K, co(k) |
by (k) K, a(k) |
Digital | bo(k) K, co(k) |
d(k) Front-End | f(k)
L (Seperston) b3 (k) K, cs(k) | -+
bpfl(k) Kp_l Cpfl(k)

Figure 4.8: Fundamental topology of atypical mismatch-shaping DAC.

m(k) = f(k) - [Kdd(k) + foﬂset]

-1
= Z [Kibi(k) + ciofset + INL;[bi ()] — [Kad(k) + foftset]

= ) [Kabi(k) + [Ki — Kqlbi(k) + ci oftser + INLi[bi (k)] — [Kqd(k) + fofsset]

1=0
pP-1 pP-1
= Z [Kabi (k)] — Kqd(k) | + Z [ci offset foffset]
=0 0
' These terms cancel (= 0) ZThes;etermscancel (=0)
P-1
+ > [[K; — Kqlbi(k) + INL;[b; (k)]]
1=0
P-1
= [bi(k)[K; — K4]] ZINL (4.12)
1=0

Accordingly, the DAC's nonlinearity INL4[d(k)] can be considered to consist of two terms:

o theerror term 2" [bi(k) [K; — K4)] will be called the gain mismatch errors, because each term
in the sum reflects an error that is caused by mismatch of the respective DAC's gain relative to the

composite DAC'sgain.
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e the error term Zf:ol INL;[b; (k)] will be called the local nonlinearity errors, because each term
in the sum reflects an error caused by the respective DAC's nonlinearity with respect to its own

(local) linear characteristic.

Noticethat if theindividual DACs consist of only one element, the local nonlinearity errors become zero,
and the composite DAC'’s nonlinearity INL;[d (k)] will consist of the gain mismatch errors only. Hence,
Equation (4.11) agrees with the previously derived expressions (3.37) and (3.40) for the nonlinearity
INL4[d(k)] of binary-weighted DACs and unit-element DACs, respectively.

Unknown Parameters. Equation (4.11) isin reality not an estimation of the error signal m(k), but

merely a description based on several unknown parameters and functions:
Ko, Ki1,... ,Kp_y and INLg,INLy,... ,INLp_; (4.12)

Obvioudly, one could attempt to measure these parameters as accurately as possible, and then estimate
m(k) on the basis of (4.11). That would, however, be a very tedious approach. It would also be a
somewhat silly approach, because one could instead employ digita correction [1] [3] [4], which would

be much simpler to implement and also provide better results.

Mismatch-shaping DACs avoid the complexity of estimating analog parameters using digital techniques
(that are not based on knowledge of the parameter’s (4.12) value) for the minimizatior?® of the signal-

band power of m(k). Hence, mismatch-shaping DACs have an advantage in that they are very robust
with respect to low-frequency variations* of the parameters (4.12).

4.4.2 First-Order Unit-Element Mismatch-Shaping DACs

The so-called unit-element mismatch-shaping (UE-MS) DACs [2,5-18] are based on an array of nomi-
nally-identical analog sources, which are controlled by each one of the single-bit signals &(k) (for

simplicity, the following will assume that the signals 4;(k) attain only the two values 0 and 1).

%The use of thisterm should not be construed to be that the mismatch-shaping DAC actually finds a minimum, but merely

that it tries to reduce the signal-band power of m (k).
2AFor example, caused by aging of the circuit or by changes in the ambient temperature, humidity, etc..
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The linear-characteristic gain K; was calculated in Equation (3.39), and according to (4.11), the nonlin-
earity m(k) = INLg[d(k)] can be described as

P—1 P—1
m(k) = [b; (k) (K; — Kq)] + Z INL;[b;(K)]
o =
= [bi (k) (K; — Kq)] (4.13)

1=0

The main characteristic of al first-order-shaping systems —whether it isa AY. quantizer/modulator or a
mismatch-shaping DAC —is that the integral (sum) of the error signal remains bounded in magnitude.
To evaluate this property for unit-element DACs, the integrated error signal n(k) can be calculated as

I k
= (K; — Kq) Z ] (4.14)

@
Il

o
<.

)

Because the composite DAC’s gain K is the average value of the individual DACs gains K; (cf.
Equation (3.39)), it follows that

3

(Ki —Kq) =0 (4.15)

Il
<)

i

This fundamental property (4.15), which isvalid for all unit-element DACs, can be used to bring Equa-

tion (4.14) to the form
P—1
(K; — Ky)
=0 i

By defining theset &/ = {0,1,2,... ,(P — 1)} and applying Schwartz's inequality to (4.16), it follows

M@

[bi(5)] — q:|:| for al real ¢ (4.16)

Il
o
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that
P-1 k
In(k)] < |K; — Kal | Y [b (j)]q]
=0 7=0
P-1]| k
< max{|K; — Kaf} > i) -

1§
o

% 7=0

IN

> -1

max{|K K4|} - P- max{
7=0

} for all real ¢ (4.17)

Theterm P - max;cy, {|K; — K4} isaconstant for each implementatior?, therefore, the unit-element

DAC will perform first-order mismatch-shaping, i.e., |n(k)| will be bounded in magnitude, if s(k) is

bounded
q } } (4.18)

Considering that Zl;:o [bi(7)] represents the number of times that the i’th DAC has been used to convert

k
> i) -

s(k) = min {max {
geER €U c

Jj=0

b; = 1, it follows that s(k) simply represents the difference in usage

maxicy { S (7))} — minge {4 4]}

s(k) = 5

(4.19)

Hence, the ssimple condition required for baseband first-order mismatch shaping is that al of the unit-
element DACs must be employed equally often (on average).

Simple Explanations of How and Why First-Order Mismatch-Shaping Works. The basic concept
on which all baseband first-order mismatch-shaping DACs are based, can be expressed as follows:

Baseband mismatch-shaping DAC’s will emphasize the performance at low frequencies (in
particular the average value of the output). When al elements are used the same number
of times, their corresponding errors will have canceled, and hence the average value will be

correct.

BMore precisely, it is a stochastic variable, which will attain a constant value for each independent implementation.
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Alternatively, the operation can be expressed as:

Let a unit-element DAC consist of the set A of unit elements. When a sample is D/A
converted using the set 5, C A of unit elements, an error § will occur. To assure a good
low-frequency performance, this error must be corrected as soon as possible by an error
—4. The error § is unknown, but (as expressed by Equation (4.15)) the error —¢ can be
committed by using the set By = A \ By of unit elements. Hence, the set B, of unused
elements should be used before any of the aready-used elements /3 are used again; when
al elements A are used, the next (of the remaining part of a) sample can be D/A converted

using any new set 3; C A of unit elements, and the procedure is repeated.

Element-Rotation Scheme. The element-rotation scheme (ERS) is possibly the smplest agorithm
for the implementation of baseband first-order UE-M S mismatch-shaping DACs.

Asillustrated in Figure 4.9, the unit elements are arranged in a fixed order and used sequentially. For

example:

If thefirst sampleis of value 4, then thefirst four unit elements & ~ b3 areturned on. If the
next sampleis of value 3, then the next three elements b, ~ bg areturned on. This procedure
continues until all the elements are used once, at which time the pointer “wraps around” as
shown in Figure 4.9, where the third sample, of value 5, causes b; ~ bg and by ~ by to be

turned on.

Figure 4.10 shows the implementation of a digital front end that provides the ERS switching function
illustrated in Figure 4.9. The digital input d(k) is assumed to be binary coded and attain only integer
values in the range from 0 to 8. A rotation pointer (cf. Figure 4.9) is generated by accumulating d(k)
modulo 8. Theinput d(k) is binary-to-thermometer encoded (cf. Equation (3.41)), and the thermometer-
coded representation of d(k) is rotated stepwise (in steps of 4,2,1) according to the rotation pointer,

which will always attain an integer value in the range from 0 to 7.
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Figure 4.9: The element-rotation scheme, which is used for the implementation of baseband first-order

unit-element mismatch-shaping DACs.
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Other Implementations. Theterm Data-Weighted-Averaging (DWA) DACswill refer to all baseband
first-order mismatch-shaping D/A converters, which can be implemented in infinite variations. The
differences lie typically in the complexity of the digital front end, in how small they manage to keep
s(k) in (4.19), and in the spectral composition of n(k). Descriptions of several implementations can be

found in [2,5-18].

The ERS algorithm was discussed in this context because it was the first known implementation [5], and

because it isfairly simple to implement.

4.4.3 Performance of First-Order Mismatch-Shaping DACs

The term baseband first-order mismatch-shaping comes from the property that (k) :Zfzo m(7) will

be of finite power, and hence that the spectral properties of the error signal m (k) can be calculated from
M(f)=N(f)-(1—z""), where z = ¢/ (4.20)

Equation (4.20) implies that M (0) = 0, but otherwise it is not straightforward to estimate M (f) accu-
rately. Often N(f) is assumed to be white noise, and although simulations provide some justification
for this assumption, it should be understood that this model is typically oversimplified and that it may

lead to very inaccurate estimates of the system’s performance.

IdleTones. Idletonesare often encountered in single-bit A quantizers when the truncation error ¢ (k)
(cf. Figure 4.2) attains pseudo-periodic patterns, in which case ¢(k) is poorly modeled as white noise.
The consequence isthat the AY. quantizer’s actual SER may be significantly less than the SER predicted
on the basis of the white-noise assumption for ¢(k). Even worse, idle tones may imply that a A
quantizer is less suitable for critical applications such as audio (cf. page 74). The idle-tone problem is
known to be quite troublesome for low-order A quantizers, and in particular for first-order quantizers.
Dither, anoise signal that is deliberately added to v(k) (cf. Figure 4.2), is known to be an efficient means
to prevent?® idle tones (cf. Chapter 3in [1]).

%Unfortunately, the dither signal must be so large that it tends to cause instability in single-bit AX quantizers, so (in reality)

itisvery hard to efficiently avoid idle tones in single-bit AX quantizers.
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Idle tones are also a serious problem in many DWA DACs [51]. Consider for example, the ERS DWA
DAC illustrated in Figure 4.9. If theinput is constant (say d(k) = 3), the output will be generated by the

periodic use of three groups of three unit elements each, and the error signal (k) will be of the form
m(k) = ...y 51, 52, (53, (51, (52, (537 51, 52, 53, . (421)

where 0, + d2 + 63 = 0. Hence, the error signal m (k) will be atone at the frequency f;/3. If thetoneis
not located in the signal-band, then the behavior may be acceptable; but if atone is in the signal-band,

the behavior is highly unacceptable because the DAC functions partly as an in-band oscillator.

For idle tones to become a problem for baseband DACSs, the pseudo-periodic patternsin m (k) must have

period(s) which are at least 2 - OSR long, and that is actually quite likely to occur [51].

A DWA DAC's digita front end can be designed (more or less successfully) to avoid idle tones. The
so-called butterfly scrambler [9] is, for example, claimed to be less tona than the ssmpler ERS front
ends, partly because it uses more combinations to generate each nomina value. The genera idea is
to assure that the signals b;(k) are “complicated” functions of the input signal d(k). An example of
how to implement “intentional complexity” was presented by Williams [39], who designed a DWA
front end comprising three ERS encoders for the control of the same array of 9 unit elements. For
each input sample, only one of the three ERS encoders is activated, i.e., clocked and used to control
the unit elements, depending on which of the three controlling sets iy = {0,3,6}, B; = {1,4,7},
By = {2,5,8} the input sample d(k) is a member of. Williams claims that this technique efficiently

prevents idle tones, but this author claims that some tones are still likely” to occur.

Some improved techniques to avoid idle tones are described in the second part of this thesis.

Estimation of the Error Signal’s Signal-Band Power. Assuming that the digital front end efficiently
avoids idle tones, i.e., that it is reasonable to model N (f) in (4.20) as white noise, it isfairly simple to

estimate the signal-band performance of DWA DACs.

#'The previous example, where d(k) = 3 will result in the same performance; signals where d(k) (for example) has the
period {1,4,7,7,4,1} will generate tones at f, /6; etc.
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Assume that the ERS algorithm?® is used for a DWA DAC with P unit elements, and that the the rotation
pointer is equally likely to attain any of the P values: {0,1,2,... ,(P — 1)}. Assume further that each
of the unit elements X;,i € {1,2,... , P} represents astochastic event of the same (Gaussian) N (1, o)
process (normalized with respect to 1 LSB).

When the rotation pointer attains the value ¢, the standard deviation g, (q) of n(k) = Zfzo m(k) =
S X6 — £ 58 [X5] can be calculated from

_ [a(P —q)
on(q) =0 LSB 5 (4.22)

implying that the average power of n(k) can be estimated roughly (for large P) a$®
- qP—q) _ Po? LSB?

Pay[n P 6

o2 LS %
B =—% (4.23)

q=0

Because m (k) isthefirst-order difference of n(k), the signal-band power of (k) can be estimated as

Po2 |1 [7/OR )
7 —/ (1 —e™79) 2 dw
0

Pav,inband[m(k)] = T

Po? LSB?
- 7= & Su(OSR1) (4.24)

™

where S, (OSR, 1) is the first-order-shaping signal-band gain factor, which is shown graphicaly in Fig-
ure4.11.

Estimating the Signal-Band Signal. To evaluate the DWA DAC's performance, the error signal’s
signal-band power should be related to a full-scale signal. Assuming that the DWA DAC is used as the
feedback element in a multi-bit AY. quantizer, it makes the most sense to relate the error signal to a

full-scale input signal g(k).

Recall from Section 4.3.1 that to obtain a high SER from amulti-bit A quantizer with alow-resolution
feedback DAC, the loop filter H(f) must be designed with a fairly high NTR,,.x value, in which case

%This assumption isjustifiable. Idle-tone-free ERS front ends will be discussed in the second part of this thesis.
PThisisthe average value for multipleimplementations of the same circuit. The reader isreferred to [52] for an analysis of

the yield aspect.
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Sh(OSR, Q) = [1 / (1 — e %) 2@y (4.25)
0

Figure 4.11: Plot of the signal-band gain factor .5, (OSR, @) as a function of the oversampling ratio
(OSR) and the order of differentiation (Q).
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the AX. quantizer’s full-scale input range (i.e., the resolving range) will be somewhat smaller than the
feedback DAC's full-scale output range (cf. Figure 4.6). Hence, a full-scale input signal will occupy

only afraction aquan; Of the feedback DAC’s full-scale output range.

The maximum signal power of ainput sinusoid will therefore be

. P LSB)? P LSB)?
Pulg(h)) = 22 0auent P LBE_ a7 LS5 (4.26

Conclusion. The DAC’s maximum signal-to-error ratio SERpa¢ can be estimated using Equations
(4.24) and (4.26) as

PV[g(k)] 6 Pa2uant LSB2
SERpAC = 55— = - 4.27
PAC T P mbana (k)] o2 LSB2S,,(OSR, 1) 8 (420)

Assuming that a certain fixed (independent of P) chip area will be used for the implementation of the
unit elements®, o will equal VP - o, where oy is the technology’s matching index for the area used
for the implementation of the unit elements. The SERy ¢ can then be expressed as

2
3aquant 1

SERpaC = :
PACT Tye2 " G, (OSR, 1)

(4.28)

The first factor in (4.28) represents the usual mismatch-induced linearity limitation (the normal THD
level), which typically will bein the order of 60 —75 dB (for aguant = 1) When areasonable large area of
amodern-technology chip isused for the implementation of the DAC’s unit elements. The second factor
in (4.28) represents the improvement obtained by the use of oversampling and first-order mismatch-
shaping. Figure 4.11 shows that, at 10 times oversampling, the improvement will be about 24 dB. In
other words, 4 extra bits of resolution can be achieved by means of 10 times oversampling and first-
order mismatch-shaping; hence 16-bit performance can be obtained only if the technology’s matching
performance allows for the implementation of 12-bit linear DACs (at a given yield level). However, if

Qquant = 0.5, which will be asomewhat typical design approach®® (cf. Section 4.3.1), one bit of effective

®Thisis a quite reasonable assumption. To obtain good matching and noise performance, a large chip areawill have to be
used even for asmall number P of elements, and multiple unit elements will typically be implemented as a sub-division of the

same area.
3IA quitetypical case if the DAC's absol ute resolution is low and the A quantizer isimplemented with an aggressive loop

filter to achieve agood SER performance.
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resolution will be lost, and it can only be re-gained by using a sightly higher oversampling ratio or by

providing better matching of the unit elements.

Severa options are available to avoid the requirement for an intolerably low relative matching index
oo. First of al, the quantizer can (and often should) be designed such that oyyan; is fairly close to one,

which (however) may require the DAC to be of fairly high resolution. Generally, at most 6-bit resolution
will be of interest for UE-MS DACs employed in AY quantizers, because a flash quantizer of the same
resolution is required for the implementation of the loop quantizer, and because the complexity of the
digital DWA front end and of the routing to the unit elements increases with the resolution. If even
higher resolution is needed, the use of a higher oversampling ratio may be an option (provides 9 dB
improvement for each doubling of the OSR), but this should be used only as a last resort. A simple
post-processing or power-up calibration may be an alternative worth considering because the required
degree of matching (say oy < 10~*) usually can withstand aging of the circuit and/or changes in the
ambient temperature, etc.. Also, a change of the topology may be a feasible option. Considering that
the AX quantizer’s signal-band performance has been successfully improved by increasing the order
of the loop filter, it seems plausible that higher-order mismatch-shaping techniques may yield an even
better signal-band suppression of the mismatch errors. .9,(OSR, 2) in Figure 4.11 shows that, if m (k)

can be made the second-order difference of a white-noise signal n(k) with the same power as n(k),

approximately 6 bits (as opposed to just 4 bits) extra performance relative to the normal THD level can
be obtained at OSR=10. The next section will investigate the possibility and evaluate the performance.

4.4.4 Second-Order Mismatch-Shaping DACs

The object of this section is to analyze digital front ends (encoders), which can provide second-order
mismatch shaping of an array of unit elements. Such an encoder was first published by Yasuda [53] and
other techniques have been published by Schreier [12] and Galton [14]. The following discussion will
focus on the tree-structure encoder proposed by Galton, because it isthe simplest known implementation

(complexity isadrawback for these encoders).
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Definitions. The following discussion will assume that the mismatch-shaping encoder controls an ar-
ray of 2V unit elements X;, i € {1,2,3,... ,2"V}, where N isaninteger. Let A, denote the set of these

unit elements
Ap ={X1,Xo,... , Xon} (4.29)
and let K; denote the gain of the single-bit DAC implemented by the unit element X;.

The object of the following is to use the set .4y of unit elements to D/A convert the digital signal d(k)
in such away that the D/A conversion’s error signal m (k) can be considered to be generated by filtering
afinite-power signal n(k) with an appropriate filter 1/H(f). More particularly, the desired mismatch-
shaping operation is defined by the relations

f(k) = D{d(k), Ao, H(f)}
= K[Ao]d(k) + m(k)

= K[Ag)d(k) +n(k) * h™ (k) (4.30)
where K[ Ay] denotes the average value (i.e. the linear-characteristic gain) of theelementsin 4; n(k)x

h~1(k) denotes the convolution of n(k) and h~!(k); n(k) isrequired to be bounded in magnitude; and
h~'(k) istheimpulse response of 1/ H (f).

Figure 4.12 shows the symbol that will be used to represent a mismatch-shaping DAC based on the set
Ayp of unit-elements. The number of oriented arcs encircling 4, represents the order of the mismatch-

shaping encoder (second-order mismatch shaping is indicated).

d(k) Q f(k) = K[Ao]d(k) + n(k) = h=(k)
—_— Ao

Figure 4.12: Symbol representing a second-order unit-element mismatch-shaping DAC, based on the set

Ao of unit elements.
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Tree-Structured Mismatch-Shaping Encoder. The basic idea of tree-structured mismatch-shaping
encoders is that they transform a single complex problem into several simpler problems?. More par-
ticularly, the problem of implementing a mismatch-shaping DAC with 2V unit elements is transformed
into the problem of implementing two mismatch-shaping DACs (each with 2¥~! unit elements) and a

node separator as shown in Figure 4.13.

d(k) Q f(k)
— Ao

Transformation
of the Problem
dy (k)
—_—— A,
d(k) Node f(k)

’ Separator

~— ()
| A,

Figure 4.13: Fundamental transformation used for the implementation of tree-structure mismatch-

shaping encoders.

The two smaller mismatch-shaping DACs each control one of the two sets .4; and A, of unit elements

defined as™

A ={X1,Xo,... . Xow—y} and Ay =Ap\ A4 (4.31)

The node separator must fulfill

d(k) = dy (k) + do(k) (4.32)

®Djvide et imperal
e, Aissplitin two sets of equal size.
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which can be written in the form

di(k) = M and  dy(k) = M (4.33)
where t(k) is chosen such that d; (k) and do (k) are integers smaller than or equal to 2V 1.
Using definition (4.30), it follows that
f(k) = D{di(k), A, H(f)} + D{d2(k), A2, H(f)}
= K[A]d (k) + ny(k) « h=1 (k) + K[As]do (k) 4+ na(k) * b= (k)
= K[Ai]di(k) + K[A2]do (k) + [n1(k) + na (k)] + b~ (k) (4.34)

Because K[ Ay] = 0.5[K[A1] + K[A,]], it follows that (4.34) can be expressed as

t(k) (K[A1] — K[A))
2

f(k) = d(k)K[Ao] + +[na(k) +na(k)] + 7N (K)  (435)
The considered transformation (cf. Figure 4.13) is permissible only if (4.35) complies with the definition
(4.30) for mismatch shaping. By comparing the two equations, it is concluded that the transformation is

permissible only if ¢(k) can be written in the form
t(k) = ng(k) * A1 (k) (4.36)

where n3(k) is required to be bounded in magnitude. For simplicity, #(k) is usually chosen as asigna

that attains only the values —1, 0, and 1.

Single-bit DACs are inherently linear and can be considered to perform mismatch shaping of arbitrar-
ily high order for any signal band. Hence, recursive use of the considered transformation, until (k)
becomes single-bit signals, will result in a DAC for which the error signal has the same spectral proper-
ties as the signals ¢;(k) generated by the node separators. Figure 4.14 illustrates an eight-unit-element
mismatch-shaping DAC implemented using this technique.

Tree-Structured First-Order Mismatch-Shaping DAC. To implement a baseband first-order UE-
MS DAC, each of the signals ¢;(k) generated by the node separators, should be of the form (4.36),
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Figure 4.14: Implementation of an eight-unit-elements tree-structured mismatch-shaping DAC.
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where h=1(k) = {1,-1,0,0,0,... }. In other words, the signals #;(k) must each fulfill

JW  for which < W fordlk (4.37)

k
> tild)
i=0

Equation (4.37) can be fulfilled for W = 1. Consider, for example, the first node separator. When
d(k) is an even number, then (k) is chosen as 0 because d(k) can be split evenly into d (k) and da (k).
However, when d(k) is odd, either d; (k) or do(k) must be one larger than the other, i.e, |t(k)| = 1.
By choosing ¢(k) of the opposite polarity to that of Ef;é t(4), it follows that (4.37) will be fulfilled
for W = 1; consequently first-order mismatch-shaping is obtained. This operation can be implemented

using only afew logic gates and atoggle flip-flop for each node separator.

Tree-Structured Band-Pass Mismatch-Shaping DAC. Assume that the signal band is a small fre-
quency range centered around f; /4. With respect to this signal band, afirst-order UE-MS DAC can be
implemented as described above, except that now A~ 1(k) = {1,0,1,0,0,0,... }.

Tree-Structured Second-Order Mismatch-Shaping DAC. The implementation of a second-order
mismatch-shaping tree-structured DAC is, in principle, the same as that of the first-order one described
above. Theonly differenceisin the generation of the signals (k). For abaseband DAC, the object isto
assure that the second-order sum of ¢(%) remains bounded, atask which can be implemented by means

of a AX. quantizer (shown in Figure 4.15).

LSB of d(k)

0/1

Figure 4.15: Node separator for use in a tree-structured second-order mismatch-shaping DAC.
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The output of the single-bit truncation element decides the polarity of the next nonzero ¢(k) value. The

multiplier at the truncator’s output assures that (k) will be nonzero only when d(k) is odd.

Themultiplier is, in reality, the main problem for UE-M S encoders of orders higher than 1 because long
sequences of even numbers will deactivate the quantizer's feedback and possibly thereby cause large
values of n(k). Consider, for example, a situation where the outputs of both integrators equal 1 and the
following 10 values of d(k) are even. During this period of even values, the output of the first integrator
will remain constant 1, whereas the second integrator’s output will increase to 11. Only then, when d(k)

finally attains an odd value, can the quantizer attempt to control the state variables.

A second-order node separator is in principle unstablé®, but usually d(k) will attain odd values once
in awhile, in which case stahility can be preserveoeS. In a best-case scenario, d(k) will be odd/even
according to astochastic process for which both outcomes are equally likely to occur, and in which there

is no sample-to-sample correlation.

445 Performance of Second-Order Mismatch-Shaping DACs

The following will estimate the performance of first-order and second-order tree-structured UE-MS
DACs on the basis of simulations. The simulations will be based on the assumption that for each sample
and for each node separator, it is entirely random whether | (k)| is one or zero. This assumption favors
the second-order mismatch-shaping DACs, but even then, the conclusion turns out to be in favor of

first-order systems; hence the assumption is acceptable for this purpose.

Estimating theError Signal. The performance is determined by the spectral properties of the DACS
error signal, which can be expressed as (cf. Equation (4.35))

(K[A] — K[Ag])

m(k) = t(k)d + [n1(k) + na(k)] * h~1 (k) where ¢ = .

(4.38)

*|n the strict sense.
%Reset operations will most likely be necessary on certain occasions.
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Considering that ny (k) * h=' (k) and no(k) * h~!(k) are the error signas from the two D/A conver-
sions D{d;(k), A1, H(f)} and D{dx(k), A2, H(f)}, which are implemented by completing the tree
(cf. Figures 4.13 and 4.14), it follows that

m(k) = t(k)s
+[t1 (k)31 + ta(k) o]
+[t11(k)d11 + t12(k)d12 + to1 (k)01 + tao (k) dao]
+...
= Y ti(k)di (4.39)

Provided the above assumption, each of the signals ¢;(k) will have the same spectral power density,
hence the performance can be simulated and evaluated on the basis of the spectral properties of only a

single t(k) signal.

Simulation Results. A node separator was simulated for H(f) = # (first order) and for H(f) =

g:gﬁ; (second-order®®). The estimated spectral power densities of the two ¢(k) signals obtained are
shown in Figure 4.16. The DFTs are based on each 16384 samples; and for clarity, they have been

smoothed with a 10-tap moving-average filter.

For the first-order mismatch-shaping encoder, the spectral power density of ¢(k) is approximately pro-
portional to the frequency, which is the expected performance (cf. Equation (4.20)). Ideally, the spectra
power density of the ¢(k) signal generated by the second-order encoder should be proportional to the
second power of the frequency, which can actually be observed at low frequencies. However, at higher
frequencies (f > f,/10), the spectral power density is fairly constant. Hence, the OSR must be high to

take advantage of the more efficient suppression of low-frequency errors.

The different behavior of first- and second-order encoders can be explained as follows. A first-order
encoder isin “standby” mode when ¢(k) = 0, and it will make use of the first available chance (i.e,, as

soon as |t(k)| = 1) to correct the accumulated error. A second-order encoder, on the other hand, isnot in

%This seems to be a good design, compared to simulation results obtained for other « values (cf. Figure 4.15).
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dB DFT[¢(k)]
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: : 2f/fs
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Figure 4.16: Spectral composition of the control signal ¢(k) when d(k) isequaly likely to be odd/even

and when there is no sample-to-sample correlation.
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Figure 4.17: The signal-band power of ¢(k) normalized with respect to its Nyquist-band power estimated
from (4.40).
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standby mode when ¢(k) = 0, because the second integrator is clocked for every sample and it may have
a nonzero input. Hence, a second-order encoder will often have to step in the “wrong” direction with
respect to the first-order sum of ¢(k) in order to control the second accumulator’s output. In essence,
this implies that a second-order encoder will not be able to adjust for high-frequency variations in the
first-order sum, which is why the spectral power density is nearly uniform for high frequencies. In
other words, a second-order encoder is so busy correcting for low-frequency errors that it neglects the

high-frequency performance.

Estimation of the Performance. To properly evaluate the performance, the DACsS SER should be
calculated. It isimportant to understand that the error signal’s Nyquist-band power will be independent’

of the order of the mismatch-shaping encoder which is used to control the unit elements; consequently,
it isonly the shape of the error signal’s spectral power density that affects the signal-band performance.
Figure 4.17 shows the error signal’s signal-band power normalized with respect to its Nyquist-band
power as a function of the oversampling ratio. By making use of the property that the error signa’s
Nyquist-band power isindependent of the encoder used, and by calculating from (4.25) that S,(1,1) =

/2, it follows from (4.28) that the Nyquist-band power of m (k) can be estimated as

0_2
P [m(k)] = 2—20— Py g (k)] (4.40)

aquant

where aguant @nd o are defined in the same way asin (4.28). In other words, the Nyquist-band SERy A
2

is approximately % and the improvement, which can be obtained by means of oversampling and

90

mismatch shaping, can be estimated from Figure 4.17.

Conclusion. Whether or not second-order mismatch-shaping encoders are useful depends somewhat
on the performance required and on the oversampling ratio. Figure 4.17 shows that first-order encoders
actually yield a better performance than second-order encoders if the oversampling ratio is less than

about 25, at which point the SER will be

9
~ aquant
SERpAc@osr—25 = 202 +40dB (4.41)

$"Because the § parametersin (4.39) are the same and the power of each t;(k) signal isindependent on the encoder.
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Thefirsttermin (4.41) can typically be made aslarge as 60—75 dB without employing calibration; hence,
second-order mismatch-shaping encoders are usualy not necessary for applications with an effective
resolution of less than 16-18 bits. In fact, the prospect of a significantly improved performance will, in
general, be required to justify the extra circuit complexity that is associated with the implementation of
a second-order encoder; they will rarely be used for oversampling ratios of less than 100. However, at
OSR=100 the SER will typically be so high that it isthe SNR (device noise) that limits the performance.
Hence, the conclusion isthat second-order UE-M S encoders are very interesting from an academic point
of view, but they are, in general, not useful or necessary for the implementation of high-performance
circuits. Although this conclusion is not reached in either [12] or [14], it is worthwhile to notice that

both references provide simulation results that support the above conclusior®.

Tojustify the above derivation further, notice that it isthe last layer of node separatorsin atree-structured
UE-MS encoder that contributes the most noise; consequently, the encoder’s performance cannot be
improved significantly by allowing #(k) to also attain the values +2 (which cannot be alowed in the
last layer). Another implication is that local matching is more important than global matching, e.g.,
in Figure 4.14 it is preferable to emphasize the matching of X; to X, and X7 to Xg, rather than to
emphasize the matching of X; to Xg and X5 to X;. This observation is very useful in the layout
procedure of tree-structure first-order UE-MS DACs, because the matching accuracy depends on the
physical distance (cf. page 59).

4.4.6 Mismatch-Shaping Encodersin Perspective

Considering that they are generally the simplest and yield the best performance, it makes sense to attempt
to optimize the design of first-order UE-MS DACs. In particular, it isimportant to develop simple ways
to implement high-resolution first-order UE-MS DACSs, and also to that these DACs do not produce idle

tones.

% Their crossover point (cf. Figure 4.17) may occur at a slightly lower oversampling ratio (say 20), but this slight improve-
ment does alter the provided conclusion. Their results are based on the simulation of a full DAC, and not just a single node

separator.
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45 NoiseLimitation

All analog systems are subject to performance limitations due to noise and nonlinear behavior of the
analog circuit elements. Asdiscussed in[43], a A quantizer can be implemented to be very robust with

respect to the nonlinearity of the analog loop filter; hence, device noise is the main factor to consider.

45.1 Discrete-Time Delta-Sigma Quantizers

Thus far, most A quantizers have been implemented with a (discrete-time) switched-capacitor 1oop
filter®®. As discussed in [43], it is mainly the first integrator (cf. Figure 4.4) that determines the AX

guantizer’s noise performance.

In the best-case scenario, which can be obtained if the first integrator is implemented as shown in Fig-

ure 4.18, only one capacitor will contribute noise'.

q(k)
Jf Ci
g(k)

vc (I)Q

|
/(I)l Vop
TP

Figure 4.18: Best-case implementation (with respect to noise) of a switched-capacitor AY. quantizer’'s

input stage.

Noise Analysis. Inclock phase ®;, theinput signal ¢ (%), and athermal-noise component «.(k, ®;) are

sampled on the input capacitor C;. In the following clock phase ®,, a charge portion ¢(k) istransferred

®5witched-current techniques have also been employed, but the performance did not measure up to that of switched-

capacitor implementations.
“OIf the A quantizer employs amulti-bit DAC in the feedback path, then C; is sectioned in anumber of smaller capacitors

in parallel. Because the noise performance will be the same, C; is (for simplicity) modeled as only one capacitor of the total

capacitance.
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from C; to the integrating capacitor Cy. The charge ¢(k) is proportional to the voltage variation across
C; and can be expressed as

q(k) = Cillg(k) +vc(k, @1)] = [f (k) +ve(k, @2) — vop(k; ©2)]]

= Cjle(k) + [vc(k, 1) —ve(k, ®2) + vop (K, P2)]] (4.42)

where ve (®2) isthe thermal noise during ®,*, av,p, (k, ®2) isthe opamp’s input-referred noise during

Do, and e(k) 2 g(k) — £(k).

Accordingly, the A3 quantizer’s signal-to-noise ratio (SNR) can be estimated from

PaV,maX[g(k)]

SNRiux < 4.43
* Pinband[UC(ka(I)l) —Uc(k,qb) +'Uop(k7q)2)] ( )
The maximum signal power P,y max[g(k)] can be estimated from
VZ
Py max[g(k)] < —22 (4.44)

8

where Vy,pp1y 1S the circuit’s supply voltage difference. Assuming that the three noise contributions are

stochastically independent, it follows that

Pinband noise = Pinband [Vc (k, @1)] + Pinband[ve (K, P2)] + Pinband [Vop (K, P2)] (4.45)

Flicker Noise. The switched-capacitor integrator can easily be designed to incorporate correlated dou-
ble sampling (CDS) techniques, which efficiently suppress the opamp’s offset and flicker noise [54], and

hence leaves only thermal noise to be considered.

Thermal Noise. Thermal noise is by nature continuous-time and wide-band. When thermal noise is
sampled, the total noise power will alias into the Nyquist range (cf. Figure 2.2 and [29]), and (to a very

good approximation) the sampled noise will have a uniform spectral power density.

Asdiscussed in [29], the Nyquist-band power of v (k, ®,) iskT/C;, where k is Boltzmann's constant,

T is the absolute temperature, and C; is the capacitance of the input capacitor. Because the spectral

“More precisely: at the time instance when the switches that are controlled by &, are opened.
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power density is uniform, the input-referred signal-band noise power can be calculated from

1 kT
Pivana[ve (B, @1)] = Ppand[ve (k, 2)] = OSRC. (4.46)
(2

The opamp’s thermal noise depends on its topology. For an OTA*, the input-referred signal-band noise

power can be estimated as [55]

1 4kT
Pinband [Uop(ka (1)2)] = @ 30 (447)

whereas, for atwo-stage opamp, the input-referred signal-band noise power can be estimated as [55]

1 4kT

Pipand [Uop(ka @2)] = ﬁf (4-48)
C

where C.. isthe opamp’s internal frequency-response compensation (Miller-effect) capacitor. Consider-
ing that the maximum capacitance is constrained by the available chip area, it is reasonable to assume
that C. ~ C;. When CDS is used, the opamp’s thermal noise power will be doubled (because it is
sampled twice), and hence the AY quantizer’s input-referred signal-band noise power can be estimated

(roughly) as

5 kT
Pinba,nd,thermal = @a (449)

By combining Equations (4.43), (4.44), and (4.49) it follows that

/OSR- C;
SNR < Vvsupply 407 (450)

Assuming that the supply voltage is 5V and that the input capacitance is at most 10 pF, it is found that
the Nyquist-band SNR is limited to about 92 dB. For each decade of oversampling, 10 dB improve-
ment will result, so the SNR is limited to about 102 dB at 10 times oversampling. Fully differential

implementations may have approximately 3 dB better performance.

Conclusion. The assumptions made for the supply voltage and the input capacitance are slightly op-

timistic, so it may be concluded that it is not possible to obtain substantially more than about 100 dB

“20perational Transconductance Amplifier
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performance when the oversampling ratio is as low as 10. The bandwidth per se does not influence
the noise performance, but the power consumption will increase with both the capacitance (§ and the
sampling frequency. Hence, the power consumption, bandwidth, and noise performance are very much
interrelated [56].

45.2 Continuous-Time Delta-Sigma Quantizers

Figure 4.19 shows the basic implementation of a continuous-time (CT) AX quantizef. Notice that the
sampling operation is performed only at the loop quantizer, and hence that al aliasing errors (including
noise aliasing) that occur at this point are efficiently suppressed by the loop filter's large signal-band gain
when they are referred to the input. Thisimplies that an improved noise performance can be obtained,

and that a separate anti-aliasing filter is not needed for CT A quantizers (a considerable advantage).

g(t) |, — e) ot | (k)
H(f) 1/[?DAC >
 LoopQuantizer
t DT/CT k N-bit@1
Sn(t) : Zeroth-Order f (k) KI@ -—
Holding DAC :

Current-Mode DAC

Figure 4.19: Continuous-time A quantizer.

Another advantage isthat the loop filter can beimplemented with opamps having alower gain-bandwidth
product* than that required for opamps employed in SC loop filters of comparable performance, and

hence a higher sampling frequency or alower power consumption can be obtained.

The main problem of CT AX quantizers is that they are very sensitive to the dynamic errors of the

“3The loop quantizer is (of course) a discrete-time block; the name refers to the loop filter only.
#“gwitched-capacitor filtersrequire opamps with again-bandwidth product of at least 4-5 timesthe sampling frequency [29].
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feedback DAC.

The Input Stage. Figure 4.20 shows the basic implementation of a typical input stage for CT AX
quantizers. The resistor R will contribute thermal noise; and the opamp, as well as the current-mode

DAC, will contribute both thermal and flicker noise.

Figure 4.20: Input stage of a continuous-time A quantizer.

Noise from the Feedback DAC. Insight in this case may best be obtained by considering the fully-
differential implementation shown in Figure 4.21. In practice, most implementations will be fully dif-

ferential.

The DAC ismodeled as adifferential current source providing a differential reference current [or which
is converted according to d(k) into the differential feedback current 4 (t) = d(k)Z.er. In the actual im-
plementation, the differential current source will be implemented as multiple differential current sources

operating in parallel, and they will be switched individually (i.e. multiplied by 41) by the current splitter
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Vad
I
I Vi
R ip G) bias,P
+ Lor+ vp
i | Current Splitter |
9(t) (Switches) ™ d(k)
- R

lth-

Figure 4.21: Noise moddl for afully-differential continuous-time AY. quantizer.
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(cf. Figure 4.20). The operation can be described in the form

e (0) +ir(t) = d(k)Luer + Loes-] (4.51)

i+ (t) —ig-(t) = ILpep+ — Lot~ (4.52)

Because the current splitter is merely an array of data-controlled switches, it will not produce noise.

Flicker noise is mainly caused by fluctuations in the current-source MOSFETS' effective threshold volt-
age, and so it can be modeled by the gate-referred noise voltages w and vp. When the flicker noise is
referred to the input g(t), it will become modulated by d(%) and magnified by R - g,,, where g,,, isthe
respective current source’'s transconductance. Since the reference current is switched and not dumped,
the modulation by d(k) will not change the flicker noise’s power, but merely its spectral composition.

Hence the input-referred flicker noise can be calculated as

_ 2 2 2 2
Uflicker,input,DAC = \/ Upgm,pR2 + ngm,NRQ

= R v%g?nyp—i-v%ggl,N (4.53)

Because d(k) presumably will have most of its power in the signal band*®, and because flicker noise has

alow bandwidth, vgicker,input,pAc Should be considered to be signal-band noise.

The total power of the flicker-noise voltages vy and vp can be controlled independently by changing the
transistor area while preserving the aspect ratio, therefore (for smplicity), the following discussion will

be based on the assumption that vx ~ vp, and hence
Uflicker,input,DAC,inband = UN,P |:R\/ gzn,P + gzn,N ] (4.54)

The current sources' thermal noise can (assuming strong inversion) be represented by the (signal-band)

noise currents

iN = \/4]€TAfgm,N (455)
ip = \/4]€TAfgm,P (456)

“Assuming that d(k) is the output from amulti-bit AY quantizer.
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where Af is the width of the signal band. When referred to the input, the (signal band) thermal noise
voltage takes the form

Uthermal,input,DAC,inband = V 4kTRAf |:R [ggnyN + g?n,P] } (457)

Notice that both the flicker noise and the thermal noise (cf. (4.54) and (4.57)) are proportional to the
gain factor R, /[an,N + gfnyp], and hence the MOSFETS' transconductance should be minimized.

The transconductances can be expressed as

21

gmp = P where Virp = Viiasp — [Vinpl (4.58)
ett,

= et here Vigx =W V; 459

gmN = m WNere Ve N = Vbias,N — Vth,N (4.59)
ett,

To optimize the input signal swing while avoiding a common-mode component in the reference cur-
rents®, it is preferable that the opamps’ virtual ground potential be Vupply/2, and hence (to keep the
MOSFETSs operating in saturation) it is a requirement that*’

Ve{T,N < Vsupply/2 and Veff,P < Vsupply/2 (460)
Because the reference current must be able to balance the input current, it follows that
Vsuppl
Lip+ = Let- 2 Sgipfgy (4.61)
By combining the Equations (4.58) through (4.61) it can be shown that

2 2
Ry/[92,x + 9% p] > R\/(%) + (%) =8 (4.62)

and in conclusion, Equations (4.57) and (4.64) can be evaluated as

Uthermal,input,DAC,inband > \/4kTRAf\/§ (463)
Vflicker,input,DAC > ON,pV8 (4.64)

“Preferable in order to minimize the transconductance (cf. Equations (4.58) and (4.59)).
#The current-source MOSFETs will typically be cascode-coupled, and hence they can potentially be operated in the triode

region. However, to avoid an additional noise contribution from the cascode transistors, the output impedance of the current-
source MOSFETSs should be reasonable high, i.e., they should be operated in saturation.
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Overall Thermal Noise Performance. For simplicity, assume that the opamps are designed to have an
equivalent thermal-noise resistance of approximately R. Because the opamp’s gain-bandwidth product
must be higher than the highest signal-band fregquency, it follows that the opamps and the resistors will
have the same spectral power density 4kT RA f. The overall thermal-noise performance is therefore (cf.

(4.63))

}Dinband,thermal,continuous,differential = 4kTRAf [8 +1+1+1+ 1]

= 48KTRAf (4.65)

The result (4.65) will now be compared to the derived thermal-noise performance estimate (4.49) for DT
AY quantizers. Considering that the input capacitance C; has an equivalent resistance of

1 1

Reaw = 55 = . 0SR-9A (4.66)
it followsthat DT AY quantizers' thermal-noise performance can be expressed as
Pihermal inband,discrete = 10T Regy A f (4.67)
which, for adifferential implementation yields
Pihermal inband, discrete,differential = 2061 Reqv A f (4.68)

From this point of view, aDT AY quantizer's thermal noise performance is approximately 4 dB better
than that of a CT AX quantizer. However, this conclusion is somewhat misleading, because generally
it will be possible (for the same power consumption and using the same technology) to choose the
physical resistor R significantly smaller than R, therefore, CT AX quantizers can be designed to
have a better noise performance. This is especially true for low-frequency (audio) quantizers, where
R = %Req\, = 1 k€2 would require C; to be approximately 1 nF for A f = 20 kHz and OSR = 10. In
other words, assuming that OSR = 10 is sufficient to obtain the required SER performance, aDT AX
guantizer will have to be operated at amuch higher OSR (in the order of 1000) using practical capacitors
to obtain the SNR performance of a CT AY. quantizer with R = 1 k). Hence, the CT AX. quantizer is
highly preferable from a power-consumption point of view. Even when the bandwidth is so large that
the same OSR is required, the CT AX. quantizer can be designed to have a lower power consumption,

because the opamps are not subject to the same high requirements.
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To get a better feeling for the numbers quoted, it may be interesting to note that for R = 1 k2 and
Af =1 MHz, the signal-band thermal noise of a CT AY quantizer is —97 dBV, and hence for a5V
supply voltage 108 dB SNR is within reach.

As a verification of the evaluations made above, one may compare them to the measurements made
for the design presented in [35]. The bandwidth was 20 kHz and the resistors were designed with a
nominal resistance of 1.8 k(2. The PMOS current source was not switched, which implies that the gain
factor (4.62) is doubled, and hence that 10 log;,(36/12) dB = 4.8 dB more noise than predicted by
the above estimate is to be expected. Assuming that the full-scale output swing was defined as +5V,,;,
(for the differentia circuit operating on a5 V supply voltage), the above estimate predicts the SNR
performance to be no better than 117 dB. The actual SNR performance measured was 113 dB. The small
4 dB difference is very redlistic for a good design, considering that the measured SNR also includes
flicker noise, quantization noise, clock-jitter-induced noise, etc., and that the current sources probably

were not designed quite as aggressively as assumed in (4.60).

Overall Flicker Noise Performance. The flicker noise component is hard to estimate accurately, be-
cause it depends highly on the technology used for the implementation of the circuit. The following
cal culations are based on measurements® for a3 um technology, for which the gate-referred noise volt-
age s estimated to be approximately 300 [nV /v/Hz] @10 Hz for a 1500 pm? transistor of either polarity.
However, because flicker noise voltage is believed to be proportional to the gate oxide's thickness, less

flicker noise can be expected when using a modern sub-micron technol ogy.

Assuming that the lowest frequency of interest is fiow, the gate-referred flicker noise voltage for the

“Bperformed by Dr. Christian Enz and provided in his lecture notes from a short course on low-noise amplifiers at EPFL in
Lausanne, Switzerland, August 1996.
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considered technology can be calculated (for Af > fi,y) from

(300 - 10-9V)21500um2 (A 10
Uflicker, MOS = —df
i

W ’ L low f
_[10(300 - 10-9V)21500um? | ( Af)
W-L flow

/1500m? Af
1uV WL In ( flow) (4.69)

An opamps' input-referred flicker noise depends on the topology in which it isimplemented; but assume
(for smplicity) that four equally-sized (and equal-transconductance) transistors contribute to 4. In this

case, the opamps’ input-referred flicker noise can be evaluated as

1500:m2 ( Af )
Vficker.opamp.input = 2.8V In 4.70
flicker,opamp,input 2 \/ Wopamp - Lopamp\/ Frow ( )
The DAC'sflicker noise contribution will be (cf. (4.64))
1500:m? Af
icker.inpu ~ 2.8uV 1 4.71
i nac = 250 O (81 a7

To obtain the required degree of matching, the DAC’s current sources will typically be implemented on
amuch larger chip area than that of the opamps’ input differential pair; consequently, the overall flicker

noise performance can be estimated roughly as

1500m? A
Uflicker,input == Uflicker,input,opamp == 2-8MV\/ a \/ln ( f > (4'72)

Wopamp . Lopamp f low

For fiow = 10 Hz, Af = 1 MHz, and atransistor area of 1500un7, the input-referred flicker noise will
be approximately —100 dBV, which implies that the flicker noise (in this situation) is dominated by
the thermal noise, even when the input resistor R is as small as 1 k(2. Considering that the gate-oxide
thickness (and hence the flicker-noise coefficient) is a decreasing function of the technology’s minimum
feature size, it follows that good flicker-noise performance can be obtained with a modern sub-micron

technology, even when using transistors of a more moderate size (10 unt).
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453 Conclusion

Continuous-time systems generally have a better thermal noise performance than discrete-time systems
because the sampling aso causes aliasing of the broadband noise, whereby the signal-band noise power
increases. Quantizers always have a discrete-time (digital) output signal; but, as discussed above, the
impact of noise aliasing depends highly on where the sampling is performed. CT A quantizers sample
the signal in the last stage of the (high-gain) closed-loop structure, and hence aliasing errors are effi-
ciently suppressed. CT A quantizers can be made so robust with respect to aliasing errors that not only
noise aliasing but also signal aiasing is tolerable. In other words, a separate anti-aliasing filter is not

required.

Because the noise performance of CT A quantizers is limited mainly by the noise from the feedback
DAC, and because they can be designed to have alow power consumption, these quantizers will probably
dominate the market if and when (cf. Chapter 5) the industry learnsto design highly-linear current-mode
DACs.

This section has only considered device noisg, i.e., thermal and flicker noise; but adifferent kind of noise
— substrate noise —is usually the main problem in mixed-mode circuits, which become ever more impor-
tant, and which usually require high-performance A/D and D/A converters in the analog portion of the
circuit. In these circuits, high-resolution discrete-time analog signals ssmply cannot be allowed because
the digital-switching noise’s high-power high-frequency spectral components alias into the signal band
in the sampling process. For the above reasons, CT A quantizers may represent the only way by which

high-resolution quantizers can be implemented.



Chapter 5

|mproved Current-M ode DACs

In Chapter 4, it was discussed that CT AX. quantizers have several advantages compared to DT AX
guantizers in terms of speed, power consumption, and noise performance. However, as discussed in
Section 3.2.2, dynamic errors from the feedback DAC is the main obstacle that prevents the successful
design of high-performance CT AX. quantizers. Itiswell understood that intersymbol-interference errors
(cf. page 47) generaly are the main source of distortion, but also that return-to-zero (RTZ) switching (cf.
page 48) can suppressthese errorsto avery low level. Unfortunately, the (classic) RTZ switching scheme
is associated with an increased sensitivity to clock-jitter-induced noise (cf. page 52), which makes it
nearly impossible to implement commercia high-resolution wide-bandwidth DACs. This chapter will
discuss techniques for the implementation of current-mode DACs, which are robust with respect to both
intersymbol-interference and clock-jitter-induced errors. The best technique proposed will also avoid

the timing and nonlinear-switching errors discussed on page 46.

5.1 Dual Return-to-Zero Current-Mode DAC

The RTZ switching scheme represents a good school of thought in that it relies neither on matching

of nor the absolute value of electrical parameters. However, it does rely on the ability to accurately

133
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reproduce the exact same waveform, and this imposes the discussed problem of its high sensitivity to

clock jitter.

To ease the sensitivity to clock jitter while preserving the good dynamic linearity of RTZ DACs, Adams[35]
has proposed that a current-mode DAC be implemented using two RTZ: current-mode (sub) DACs op-
erated time-interleaved as shown in Figure 5.1. Such DACs will be called Dua-RTZ DACs. Assuming
static linearity, the RTZ switching assures that each sub DAC's operation is accurately described by an
impulse response. Because f(t) = fi(t) + f2(t), the composite DAC will aso be described by an
impulse response?; consequently, it will be linear. Uncertainty and mutual mismatch of the sub DACS
impulse responses’ is acceptable, because it will cause neither static nor dynamic nonlinearity. The
main advantage of the system is that if the two DACs are clocked by the same clock signaf*, the DAC'’s
clock-jitter-induced error can be expressed as (cf. Equation (3.26) and Footnote 9 on page 50):

fiittererror(t) = Kpac Y, [d(k) — d(k — 1)]AT (k)8(t — kT) (5.1)

k=—00
which, for amulti-bit signal d(k), isasgood aswhat can be obtained when using a discrete-time voltage-
mode DAC. Thus, the clock-jitter sensitivity of multi-bit Dual-RTZ DACs operating with a minimum
degree of oversampling will be modest (cf. Section 3.2.3); consequently, they will be suitable for usein

commercial products.

Theerror included in f(t) will be alinear combinatior? of the errors® included in £, (k) and f»(k), so, if

the sub DACs areindividually mismatch-shaping, the Dua-RTZ DAC will be mismatch-shaping aswell.
The feasibility and effectiveness of this technique is verified by a state-of-the-art design [35], which is
a so described in more detail in [57].

Although the performance reported in [35] is outstanding, it should be understood that it is not easily

obtained. Each of the sub DACs consist of several current sources, and the timing of the signals control-

Each operating with a 50% duty-cycle.

2The duration of the combined impulse response will typically slightly exceed the sampling period.
3Including, but not limited to, mismatch of their linear-characteristic gain.

4In which case, the two sub DACs are subject to the same clock jitter signal AT (k).
SApproximately the average value of the two error signals.

SEach error is defined with respect to the linear characteristic of the respective sub DAC.



5.1. DUAL RETURN-TO-ZERO CURRENT-MODE DAC 135

[ Impulse Response [ f (¢)]

e o1

y

50% RTZ ‘ Impulse Response [ f(t)]
|/ | >
T,/2 T

y

|
L Impulse Response [f(t)]
|

T2 T,

Figure 5.1: Linearization using two time-interleaved RTZ current-mode DACs.
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ling these many current sources must be synchronized not only within each sub DAC, but also mutually
between the two sub DACs. In other words, the success of the design depends significantly on the ex-
perience of the actual designer(s) and layout person(s), because timing errors and nonlinear switching

errors are still mgjor concerns (cf. page 46).

5.1.1 A Variation

The fundamental element in the RTZ switching scheme is that no current source is used in any two
samples without being brought to a fixed status (the “zero” in “return-to-zero”) in between. When
used in combination with mismatch-shaping techniques, reduced clock-jitter sensitivity can be obtained

without using the Dual-RTZ switching scheme.

First notice that the fundamental property of the element-rotation mismatch-shaping encoder is that,
with respect to any origin in time, no unit element is used twice before the other unit elements have
been used in between. Hence, if an ERS UE-MS DAC isimplemented with twice as many unit-element
current sources as the maximum code to be D/A converted, it follows that the encoder will automatically
perform RTZ switching’. The advantage of this approach in comparison to the Dual-RTZ switching
scheme is that the currents are switched at half the frequency, therefore, timing errors and nonlinear

switching errors are suppressed by 3 dB.

5.2 Time-Interleaved Current-Mode DAC

This section will describe a simple technique for the implementation of current-mode DACs with a
very good dynamic linearity/performance. As for Dual-RTZ DACS, the output current is generated by
switching between two (or more) DACs, but dynamic linearity is obtained using another technique not

employing RTZ switching.

Dynamic nonlinearity is avoided by operating two DACs time interleaved, and by connecting the DACs

to the output only after they have settled from being updated. Thereby, all switching effects become

"It isassumed that each unit-element current source operates with a 100% duty cycle.
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invisible seen from the output terminal. The switching between the two DACs is performed at one
centralized node, whereby the DAC becomes as insensitive to clock-jitter as Dual-RTZ DACs, but it is
alsoinsensitive to nonlinear-switching, intersymbol-interference, and timing errors. Hence, the proposed
technique is useful not only for the implementation of high-performance oversampled data converters,

but also for high-speed DACs with bandwidths of, say, 100 MHz or more.

5.2.1 Basic Topology and Operation

Figure 5.2 shows the basic implementation of the proposed DAC structure. DAC 1 receives the new
input value d(k) dlightly after the onset of ®,, whereas DAC 2 receives it half a sampling period later
(dlightly after the onset of @,). The switching block consisting of the four PMOStransistorsis controlled
such that the output f;(¢) from DAC 1 is connected to the output, i.e., f(t) = fi(¢) in clock phases @4,
whereas the output f»(¢) from DAC 2 is connected to the output, i.e., f(¢) = fo(t) in clock phases ®,.

The point is that when the DACs are updated, the respective DAC is connected to a through-away
point (i.e., the current is dumped to an arbitrary low-impedance terminal, preferably having the same
virtual-ground potentia as the load terminal), and the potential switching errors — including timing,
intersymbol-interference, and nonlinear-switching errors — will not affect the output signal f(¢) in any
way. The only requirement is that when the DACs are updated, they must settle to their static value
within approximately half a sampling period, at which point they are connected to the output terminal.

The four PMOS transistors constituting the switching block may either be operated as CMOS switches,
in which case the two active transistors operate in their triode region, or as hard-driven differential pairs,
in which case the two active transistors operate in their saturation region. Either way, it is imperative
that the differential driver is implemented such that the switching block implements a make-before-
break switching function. Such differential drivers are well known and widely used (see [58]). For the
implementation of high-speed DACS, the switching block may be driven such that al four transistors
aways are active and operate in saturation, and such that only one transistor of each differential pair

carries the majority (say 99%) of the tail current f,(¢).
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Figure 5.2: Basic topology of the time-interleaved current-mode DAC.
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5.22 Analysis

Wheresas deleterious dynamic effects associated with the update of each DAC are efficiently prevented,
the switching block can potentially cause switching errors. The situation is, however, much improved

compared to stand-alone current-mode DACs as well as Dual-RTZ DACs.

Timing errors will obviously not be a problem. The mere fact that the switching function is centralized
assures that all current sources in each DAC are updated at exactly the same instance with respect to f ().
Glitches may occur in the transition from one clock phase to the next, but assuming that the differential
driver provides a consistent switching waveforn®, these glitches will be linearly related to the input

signal d(k), and hence they do not pose a problem.

Nonlinear-switching errors’ can occur if the switching waveform provided by the differential driver
is not consistent. Consistency is, however, reasonably simple to obtain because it refers to only one
signal, and any reminiscence of the potential nonlinear error can be suppressed efficiently by making the
differentia driver fast. Notice that only the differential driver and the switching block “need” to be fast;
the two sub DACs may be significantly slower (as shown in Figure 5.2), and that is a property which can

be used to minimize the digital circuit elements power consumption (of concern in high-speed DACS).

Charge injection can sometimes cause nonlinear-switching errors, but thisimplementation isindeed very
robust with respect to charge-injection errors. If the active PMOS transistors are operated in saturation,
the charge-injection signal will be proportional to the switched signal, because the inversion charge of
a saturated MOSFET is proportiona to the conducted current, and hence it is a linear effect. On the
other hand, if the active PMOS transistors are operated in the triode region, the charge-injection signal

will be independent of the switched signal because the opamp provides a virtual ground, and hence the

8Any waveform is acceptable because linearity is dependent on repeatability only. “Switching waveform” refers to the
provided waveform locally around (i.e. from shortly before to shortly after) the switching instances, and hence it isindependent
of clock jitter. It is acceptableif the switching waveform &, — ®, differs from the switching waveform &, — ®;, aslong as

they are consistent individually.
®This type of error should more precisely be considered to be noise rather than nonlinear errors. It can be assured that

the differential driver is not affected by the signal d(k), and hence the error will not be deterministically related to the signal

(which is the fundamental property of nonlinear errors).
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gate-to-channel potential will be constant. Thisis also alinear effect.

Conclusion. The proposed time-interleaved DACs are characterized by the same advantages as the
Dua-RTZ DACs, namely reduced clock-jitter sensitivity, insensitivity to mismatch of the sub DACS
gain and offset, and that atime-interleaved DAC will be mismatch-shaping if the sub DACs are individ-
ually mismatch-shaping'®. However, as discussed above, time-interleaved DACs are also characterized
by an improved immunity to timing errors as well as nonlinear-switching errors, and hence they are
much less critical to implement, compared to Dual-RTZ DACs, for example. The improved robustness
can be used constructively to reduce the overall chip area, or to employ more modular layout techniques,

which potentially can help reduce a product’s turn-around time.

In conclusion, time-interleaved current-mode DACSs are very suitable for use in commercial products,

whether they are high-speed, high-performance, or short-design-time applications.

5.3 Conclusion

The successful implementation [35] of a mismatch-shaping Dual-RTZ DAC has verified that it is fea-
sible to implement current-mode DACs with a very good dynamic performance. The proposed time-
interleaved DACSs represent an improved concept, which combines the advantages of Dual-RTZ DACs
with insensitivity to timing errors, thereby providing an even more robust architecture for the implemen-

tation of current-mode DACs.

19The property that the time-interleaved DAC's error signal is the average value of the sub DACS' error signals implies that
the requirement of two (or more) sub DACs need not imply that the time-interleaved DAC will require twice the chip area
for its implementation (compared to a stand-alone DAC of the same static linearity). A DAC will occupy a minimum area A
which cannot be reduced because the areais related to the stochastic element in the technology’s matching properties. To avoid
systematic errors, the minimum area A is often divided into (say) two areas 4; and 4> of equal size, and chosen according to
the common-centroid layout principle (cf. page 59). It is easily identified that if DAC 1islaid out on A;, and DAC 2 is laid
out (symmetrically) on A, the composite DAC will fulfill the common-centroid principle even if the individual DACs do not.
In other words, in terms of stochastic properties, time averaging is equivalent to coordinate averaging, and hence the total area

A = A; U A can bethe same asif only one DAC had been implemented.
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High-performance current-mode DACs are, in general, more difficult to implement than discrete-time
voltage-mode DACs. However, in critical design situations (low-power, low-noise, or high-speed) the
extra difficulty may well be worth the trouble because the achievable improvement in performance can

be as much as afactor of 10.
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Chapter 6

Dithering of Mismatch-Shaping DACs

Unit-element mismatch-shaping (UE-MS) DACs are by themselves important circuits, and they are dso
important for the implementation of scaled-element mismatch-shaping DACs which are discussed in
Chapter 7. Unfortunately (as discussed in Section 4.4.3), UE-M S DACs have atendency to produce idle

tones! that can ruin the performance of an otherwise well designed data converter [51].

Fortunately, idle tones can be prevented using dithering techniques. This chapter will discuss and analyze
a prior-art dithering technique dedicated for tree-structure UE-MS encoders, and two novel dithering
techniques for use with the simpler ERS encoders will be proposed. As discussed in Section 4.4.5, first-
order UE-MS DACs are usually preferable€? in comparison to higher-order UE-MS DACs; hence, the

discussion will center around only first-order encoders.

6.1 IdleTonesin Deterministic UE-M S Encoders

Idle tones in mismatch-shaping DACs are caused by periodic/systematic use of the unit elements. The

following discussion will consider the idle-tone behavior of deterministic UE-MS encoders, i.e., en-

1Spurious tones caused by periodic use/shuffling of the unit elements.
2In terms of simplicity, but also in terms of performance for OSR less than 25.

143
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coders in which the unit elements for the conversion of d(k) are selected as a function of only the signal

d(k) and aninitial condition. These encoders represent the majority of the published/known encoders.

6.1.1 IdleTonesin ERSUE-MS Encoders

Element-Rotation-Scheme (ERS) UE-MS encoders select the unit elements for the D/A conversion of
d(k) according to the very simple rotation rule described on page 103, and hence they have a tendency
to produce idle tones (cf. page 105). The following discussion refersto Figures 4.9 and 4.10.

Assume that the input d(k) is periodic with the minimum period P. A certain number

Q=" di) (6.1)
of elements will be used for the conversion of one period of d(k).

Considering the nature of the ERS algorithm, it follows that the conversion of one period of d(k) is
characterized by a certain increment (modulo N, where N isthe number of unit elements) of the rotation

pointer (k)
r(k 4+ P) = modulo[r(k) + Q, N] (6.2)

The rotation pointer (k) will be periodic signal with aperiod of N P samples (and possibly aso with a

shorter period)
r(k + NP) = modulo[r(k) + NQ, N] = modulo[r(k), N| = r(k) (6.3)

Because the signal d(k) and the rotation pointer (k) are periodic with the same period N P, the use
of the unit elements (and hence the error signal m(k)) will be periodic with the period NP as well.
Consequently, the error signal m (k) will consist of only idle tones, which are located at integer multiples

of the frequency f;/(N P).

Performance Evaluation. The above analysis indicates that the ERS encoder is indeed very likely to

produce idle tones, and that there is no reason to believe that they will not appear in the signal band.
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The assumption made that d(k) is periodic does, however, not represent the typical case. Almost always,
d(k) will be the output of a AX quantizer/modulator, and hence d(k) will not be periodic because it
includes the quantizer/modulator’s truncation error signal, which is an Autoregressive Moving-Average
(ARMA) pseudo-stochastic process (popularly called “shaped noise”). The included ARMA pseudo-
stochastic signal will generally improve the idle tone behavior, but because it has only little power in the
baseband, the maximum-likelihood estimator of (k + PN) is still described by Equation (6.3) (now
with a nonzero standard deviation). Hence, intuitively, the power of the persistent idle tones in the

UE-MSDAC's error signal will (mainly) be smeared locally.

Figure 6.1 shows three examples of the error signa generated by a 16-element UE-MS DAC driven by
an ERS encoder. The input signal d(k) was in all three cases generated from an 8-times oversampled

sinusoid.

Figure 6.1a shows the result when d(k) is generated by simple truncation of the sinusoid, in which case
d(k) is periodic with period 16. As expected, idle tones are observed at frequencies that are integer
multiples of 45 = £, where the factor of 4 reflects that, for the parameters used in this simulation,
modulo[@, N] = 4 (cf. Equation (6.2)). Clearly, idle tones are indeed a problem that need to be dealt

with.

-50 -50 -50
-100 -100 -100
-150 -3 -2 ‘ -1 -150 -3 -2 -1 0 -150 -3 -2 -1 0
10 10 10 10 10 10 10 10 10 10 10 10
(a) Periodic (b) AX-driven (c) ARMA-stochastic dither

Figure 6.1: Spectral power density (DFT) of the error signal from a 16-element ERSUE-MSDAC. The
units are dBFS versus frequency normalized to the Nyquist frequency.

The high-resolution input sinusoid can, of course, only be represented accurately if the 4-bit truncation
is performed by a AXY. quantizer/modulator, in which case the error signal will be as shown in Fig-

ure 6.1b. It can be observed that the ARMA pseudo-stochastic truncation error breaks the periodicity
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and thereby spreads the error signal’s power to, presumably, al frequencies, but idle tones are still ama-
jor problem. Notice that the ARMA pseudo-stochastic truncation error does not spread the error signa’s
spectral power density as predicted above, but that idle tones rather appear at discrete frequencies in an
unpredictable pattern. The discrepancy reflects the “pseudo” in the ARMA pseudo-stochastic truncation
error, i.e., that the truncation error is correlated with the sinusoid, and hence does not originate from
a truly stochastic process. To support and investigate the validity this explanation, a third simulation
was performed where d(k) was generated by truncating the sinusoid (as in Figure 6.1a) and adding to it
the output from an independent AY. modulator with zero input achieving arealistic non-pseudo ARMA
stochastic process. The spectral power density of the error signal produced in this way is shown in

Figure 6.1(c). Now, the expected local spreading of the persistent idle tones can be observed.

Conclusion. Figure 6.1b shows the spectral power density of atypical-case error signal m (k) gener-
ated by a UE-MS DAC driven by an ERS encoder (Figures 6.1a and 6.1c do not correspond to useful
systems). Strong idle tones are observed, and they should be expected whenever the simple ERS encoder
isused. The performance is unacceptable for a wide range of applications, and hence better UE-M S en-

coders are needed.

6.1.2 IdleTonesin Complex UE-M S Encoders

It is often claimed — and there is some truth to it — that the idle-tone behavior can be improved by
selecting the unit elements in a pattern which is more “complex” than the simple rotation pattern used
by the ERS encoders. Severa techniques have been proposed [9] [14] [39], but neither of them is
actually recommendable unless a stochastic element (dither) is appropriately incorporated. Indeed, idle
tones are less likely to occur when using these encoders, but as long as the encoders are deterministic
digital state machines, idle tones can (and usualy do) exist. The problem is that the idle tones may

be so hard to find (by means of time-consuming and therefore sparse simulations) that the designer is

3Truly stochastic processes cannot be implemented using only digital circuitry, but a pseudo-random process is in general
sufficient for all practical purposes. By assuring that the pseudo-random sequence has a sufficiently long (minimum) period,

the resultant idle tones can be made arbitrarily dense in frequency.
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inclined to assume that they will not occur. Unfortunately, idle tones tend to reveal themselves primarily
after the circuit is implemented (under testing), at which point a redesign of the circuit may prove to be
necessary. Even very experienced designers have been deceived by “hiding” idle tones, and hence it is
usually worthwhile to eventually overdesign the circuit and thereby avoid the extra cost and time which

is associated with aredesign.

Figure 6.2 shows a signal-band idle tone which has been observed in a 16-element tree-structure UE-M S

DAC (cf. page 115).
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(a) Spectra power density versus frequency (b) Signal-band power versus 1/OSR

Figure 6.2: Signal-band idle tone observed in atree-structure first-order UE-MS DAC

6.2 Dithered UE-MSEncoders

Avoiding idle tones is essentially a matter of avoiding patterns in how the unit elements are selected. A
good technique to prevent patterns is to use an encoder that encounters equilibrium states, in which the
unit elements for the conversion of the next sample can be selected in two or more (almost) equally good
ways, and to let a stochastic process choose how to proceed. Idle tones will be efficiently prevented
if such equilibrium states are reached fairly often, and if the future selection of the unit elements will
differ substantially depending on the outcome of the stochastic process. Such techniques will be called

dithering techniques.
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6.2.1 Dithered Tree-Structure UE-M S Encoders

Tree-structure UE-MS encoders were discussed in Section 4.4.4, and a specific first-order implemen-
tation was discussed on page 115. The overall operation relies on the operation of the node separa-
tors, which must each generate a signa ¢(k) of values {—1,0,1} such that the sum |Zf:1 t(7)] is
bounded/minimized for all k. Whenever a node separator receives an odd signal, ¢(k) must be chosen
as +1, otherwise as 0. Obvioudly, #(k) should always be chosen of the opposite polarity as that of
Zf:’f t(4); but when the sum is zero, any choice may be equally good (i.e., its an equilibrium state).
Hence, dithering a tree-structure UE-M S encoder is a matter of, in al the node separatoré, randomly

choosing the polarity of ¢(k) when Ef;f t(i) = 0.

Figure 6.3 shows the characteristics of the error signal that was generated by a 16-element fully-dithered
tree-structure first-order UE-MS DAC when the input signal d(k) isa—12 dBFS 64-times oversampled
AXY-quantized sinusoid.

The dithering technique (which wasfirst proposed in [14]) appearsto be very efficient, but in Figure 6.2a
it is observed that the error signal’s spectral power density flattens around the Nyquist frequency. This
is not amajor problem, but it does imply that the signal-band performance is less than what it perhaps
could be (compare Figures 6.2b and 4.17). The slight degradation is caused by a combination of two
effects:

1. In the dithered tree-structure encoder, Zle t(7) will oscillate between the three values {-1,0,1}
instead of only the two values used by the deterministic encoder. Because the frequency of
|t(k)| = 1 eventsis the same, the dithered encoder will need more samples to correct for pre-

vious errors, and so it will not perform as well at high frequencies.

2. Midscae input d(k) (i.e., when haf the unit elements are selected in each sample) is the optimum

operating condition for the encoder. This is because midscale input corresponds to the highest

“To efficiently avoid idle tones, a separate random bit should be generated for each node separator because idle tones have
been observed when the same stochastic process is shared by all the node separators. This observation supports the second rule
for how to obtain efficient dithering (cf. the introduction to this chapter), namely that the stochastic process must be allowed to

choose among substantially different patterns in the use of the unit elements.
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Figure 6.3: Error signal from a dithered tree-structure UE-MS DAC. The input signal d(k) was a —12

dBFS 64-times oversampled AX-quantized sinusoid.
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Figure 6.4: Error signal from a dithered tree-structure UE-MS DAC. The input signal d(k) wasa—1.5

dBFS 64-times oversampled AX-quantized sinusoid.
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probability (p = 0.5) for |¢(k)| = 1 events, which is proportiona to the closed-loop’s feedback
factor and thereby aso the error signal’s controllability (cf. the discussion on page 115). If the
input signal includes long sequences for which nearly all/no unit elements are used, the error
signal’s controllability will deteriorate (in those periods), and hence the encoder’s high-frequency
performance will be degraded. Such sequences will be called low-control sequences. Low-control
seguences are, e.g., a characteristic of highly-oversampled full-scale sinusoid input signals. This
effect isdominating in Figure 6.4, where the magnitude of the AX-quantized sinusoid input signal
isincreased to —1.5 dB full scale.

L ow-Control Sequences. Thefollowing will study the effect of low-control sequences. For simplicity,

d(k) isdefined as d(k) scaled such that afull-scaled(k) spans the range from —1 to +1.

For a constant input d(k), each node separator in atree-structure UE-M S encoder will (for each sample)
have a constant probability p = % for |¢t(k)| = 1. The probability p is proportional to the control

system’s loop gain (cf. Figure 4.15 with afirst-order loop filter), and hence the transfer function of the
filtering process to which the error signal is subject can be estimated as (for some empiric constant

a € R)

1 1— Z_l '27Tf/f
Hys(f) = where z = ¢’ s (6.4)

= 1+ap1i% o 1+ (ap—1)z~1

In Equation 4.22 it was estimated that the error signal’s power density is related tod(k) as /p(1 — p),
and hence —for al constant inputs d(k) — the spectral power density can presumably be expressed as

1—2z1

T T VP p) where z =Pl 65)

PSD(f)

To investigate the validity and accuracy of Equation (6.5), a fully-dithered 16-element tree-structure
UE-MS DAC was simulated for 8 constant inputs, for which 8,9, 10, ... , 15 unit elements were used
in average®. The signal-band power of the obtained error signals versus 1/OSR is shown in Figure 6.5

®As usual, the UE-MS DAC was driven by a AX modulator, and hence the neighbor values were used in a small fraction

of thetime. Thiswas mainly done to conform with the subsequent simulations, where a small amount of noise is required.



6.2. DITHERED UE-MS ENCODERS 151

(solid lines), and the corresponding estimates obtained by integration of PSD(f) (for a = 2) are shown
with dashed lines. The correspondence is reasonably good.

In particular, it can be observed that when low-control sequences are encountered (i.e., when p de-
creases), the signal-band suppression Hys(f) becomes less efficient and the error signal’s total power
is decreased. When the OSR is around 30, the two effects somewhat cancel, and an only minor deteri-
oration of the performance is encountered even when p becomes quite small. This relationship can also

be observed in the simulation results shown in Figures 6.3 and 6.4.

6.2.2 Dithered ERSUE-MS Encoders

Dithered tree-structure UE-M S encoders offer efficient mismatch shaping without producing idle tones.
The circuit complexity is, however, fairly high, and the technique is commercialy protected by aU.S.
patent®. It was, therefore, found to be worthwhile to develop alternative dithering techniques which can

be used also for the simpler ERS encoders (which possibly are the simplest known UE-M S endoders).

To obtain dithering, it is necessary to allow the encoder to choose among two or more ways to select
the unit elements. Williams has proposed a technique where the unit elements are selected by only one
of several alternating ERS encoders [39]. When using his technique, the ERS encoders are activated as
anonlinear function of the input signal d(k), but that will not guarantee the absence of idle tones (cf.
Footnote 27 on page 106). Instead, to obtain efficient dithering of the composite encoder, a stochastic
process can be used to randomly choose which encoder is used in which samples. The principle is shown
schematically in Figure 6.6 where only two ERS encoders are employed . This dithering technique will

be called dual-ERS dithering (or, more generally, for dual-encoder dithering if the encoders are not
necessarily ERS encoders). The underlying mechanics of dual-encoder dithering is that the stochastic

process assures that the input to each of the (sub) encoders will befree of patterns and of uniform spectral

6U.S. patent 5,684,482, filed March 6, 1996, issued November 4, 1997. A PCT application does not appear to have been

filed, but other patents may be pending.
"Obviously, this technique will work with any type and any number of UE-MS encoders. Two ERS encoders are shown

because this probably is the simplest implementation, yet effective to prevent idle tones.



152

CHAPTER 6. DITHERING OF MISMATCH-SHAPING DACS

_75 L

100¢

125¢

-150

100t

125¢

-150

100¢

125¢

-150

10°

_75 L

100¢

125¢

-150

100t

125¢

-150

100¢

125¢

-150

Figure 6.5: Static performance of a dithered tree-structure UE-M S encoder. The plots show the signal-

band power versus 1/OSR for each constant value of d(k).
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power density. It is simple to show that the mismatch-shaping property is preserved (provided that only

one set of unit elementsis used).

ERS

Encoder
\\ j\ﬁ—>
a(k) _ _ Random Process | UE-DAC f (k)

1 \

Y s !

Encoder

Figure 6.6: Basic principle for adithered ERS encoder

Simulation Results and Evaluation. The dynamic performance of a dua-ERS dithered UE-MS en-
coder isillustrated in part by Figures 6.7 and 6.8, which correspond to Figures 6.3 and 6.4, respectively,
in that they are based on the same operating conditions. The performance is quite similar to that of fully

dithered tree-structure UE-M S encoders.

The mismatch-shaping property of ERS encoders is obtained because the error cancels every time the
rotation pointer wraps around (i.e., when a full rotation is completed, cf. Figure 4.9). When the input
d(k) is shared by two encoders, wrap-around events will occur at only half the frequency, and hence
the high-frequency performance is degraded as the number of sub encoders is increased (two is the
optimum). This effect is quite similar to the first degrading effect for dithered tree-structure encoders
(described on page 148). The other degrading effect for dithered tree-structure encoders (described on
page 148) aso has its equivalent for dual-ERS dithered encoders. When nearly al/no unit elements are
used for the conversion of each sample, the two rotation pointers will rotate (backwards/forwards) only
relatively slowly, whereby the error-cancellation process is slowed and the high-frequency performance
degraded. To investigate this effect, a series of simulations with constant input d(k) was performed
(equivalent to the series of simulations presented in Figure 6.5). The quite promising results are shown

in Figure 6.9. It appears that, for some input signals (9/16, 13/16, 14/16, 15/16), there is (relatively-

8When evaluated with respect to the OSR required to suppress the error signal’s signal-band power to —100 dBFS, the

performance is slightly better than that of dithered tree-structure encoders.
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speaking) aslightly increased spectral power density around the frequencies £ /16 and/or fs/32. These
frequencies correspond to the average period for the rotation pointers, and the locally increased spec-
tral power density can be interpreted as spread idle tones. These idle tones are well-spread (dithered)
and they are related only to the number NV of unit elements and to the number of encoders (two), and
hence they cannot move to low frequencies (f; /2N = f,/32 is the lowest possible frequency). Thus,
if the signal-band does not include these well-defined frequencies, the spread idle tones do not pose any
threat of deteriorating the system’s performance. In essence, the phenomenon is due to low numbef
(V) of combinations by which any given code can be converted, which is directly related to the imple-
mentation’s simplicity. The performance can possibly to be improved if the unit elements are ordered

differently depending on which of the two encoders is activated (it has not been tested yet).

Proposed Implementation. Figure 6.10 shows a simple implementation where the two ERS encoders
share most of the hardware; only the distinctive elements (namely the management of the rotation point-
ers) are implemented separately. A single-bit pseudo-random signal &,4 is generated to select which of

the two rotation pointers isto be used for the encoding of each sample of d(k), and the rotation pointers

are updated accordingly.

When comparing this implementation to the usual implementation of ERS encoders (cf. Figure 4.10), it
isobserved that the extra hardware required to implement dual-ERS dithering is of negligible complexity.
In conclusion, the overall complexity of the proposed dual-ERS dithered encoders is significantly less

than that of dithered tree-structure encoders, and they yield essentially the same performance.

6.3 Random-Orientation Dithered ERS Encoder

The dithering of tree-structure encoders as well as dual-ERS encoders has the side effect of decreasing
the frequency by which the errors are canceled. In an attempt to design a dithered encoder with a
better high-frequency performance, the random-orientation (RO) dithering technique described below

was developed. The result is an ERS encoder for which the errors are canceled with the same (high)

®Compared to tree-structure encoders, for example.
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Figure 6.7: Error signal from adua-ERS dithered UE-MSDAC. Theinput signa d(k) wasa—12 dBFS

64-times oversampled AX.-quantized sinusoid.
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frequency as for un-dithered ERS encoders (the average value of d(k) divided by the number N of unit

elements).

6.3.1 A Family of Dithering Techniques

The following will investigate the possibility of dithering ERS encoders without allowing that any unit
element is used twice before all the other elements have been used in betweert®. Dithering requires
that equilibrium states are encountered, and that the unit elements then can be selected in at least two

different ways.

Figure 6.11 shows ageneral technique for the implementation of dithered ERS encoders. With respect to
an arbitrary initial condition (for & = 0), the unit elements are used sequentially** until they all have been
used once. At this point, an equilibrium state is reached. The equilibrium state is likely to occur in the
middle of asample, i.e., when the encoder must select more unit elements than there are unused elements
left to choose from. Instead of implementing a simple “wrap-around” event and selecting the extra unit
elements from “the other end” (as for ERS encoders), the extra elements are chosen arbitrarily among
the elements that are not already selected for the present sample. For simplicity, the extra elements
are chosen as a sequence of elements, such that the ERS algorithm can be used. The ERS agorithm
is employed (starting with respect to the new origin) until all the elements have been used twice, at
which point the second equilibrium state is reached. Notice that it is acceptable to alter the orientation
of the rotation between the equilibrium states. This process is continued; every time an equilibrium
state is reached, a new origin and the orientation of rotation are chosen (randomly), whereby the desired

dithered mismatch-shaping characteristic is obtained.

M ore precisely, the unit elements must be selected such that there exists an origin in time, for which the outlined condition

isfulfilled.
1 0Obviously, the unit elements may be used in any order, the ERS algorithm is chosen only to simplify the implementation.
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Figure 6.11: Identification of equilibrium states.
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6.3.2 Random-Rotation-Scheme Dithering

Simple implementations are in genera preferable, and the selection scheme shown in Figure 6.11 is
perhaps a little more genera than it needs to be. The unit elements used for d(3), d(5), and d(8) are,
for example, not sequences of neighbor elements, and hence two ERS encoders operating simultane-
oudly, an array of logic-and gates, etc., will be required for the implementation. Sufficiently effective
dithering can, however, be obtained even if only the orientation of rotation is chosen randomly when an
equilibrium state is reached, and then the selection process can be designed to choose only sequences
of elements. This simplified dithering technique — called random-orientation dithering —isillustrated in
Figure 6.12. Therotation pointer is marked with an “ x” and the target pointer, which (when the element

is used) identifies that an equilibrium state has been reached, is marked with a“o.”

a2 =5 [ [ ] \iH—I—FQI% Flip rotation: YES
a3 =5 P | | \%E

a@ =7 | 8] | Fiproion: NO
d(5) = 4 %—% | [ [ 1 P& riprotation: YES

di8) =5 @ ‘ ‘ ‘ H;'-P@{Fliprotation:YES

Figure 6.12: Random-rotation dithering of an ERS encoder.



6.4. CONCLUSION 161

Notice that it is quite ssmple to keep track of the two pointers. While the orientation of rotation is
maintained, the target pointer remains constant whereas the rotation pointer is updated according to the
ERS algorithm. When the orientation of rotation is atered (occurs randomly when an equilibrium state
isreached), the two pointers are simply interchanged. The dithering effect is obtained because the target

pointer will be arandom signal.

The encoder can, for example, be implemented using the topology shown in Figure 4.10 when the latch
isreplaced by asmall digital state machine (the counterclockwise rotation can be mimicked by adding a

signal-dependent offset to “B”).

Simulated Performance. The proposed random-orientation dithered encoder has been simulated us-
ing the same signals and conditions used for the dithered tree-structure encoder and the dual-ERS en-
coder. The results are shown in Figures 6.13, 6.14, and 6.15. The performance is, unfortunately, not
better than the performance of dual-ERS encoders, which in general are smpler to implement. It is
believed that the unexpected poor performance is due to the relatively slow change in the target pointer.
If, for example, the probahility of altering the orientation of the rotation is reduced from 0.5 to (say) 0.3,
then the relatively flat region (10 dB per decade) for OSR less than 10 in Figure 6.14a is extended to

much lower frequencies (not shown).

The performance can probably be improved by also choosing a new origin for every new equilibrium
state, but then the hardware complexity will increase considerably (although it may be worthwhile for
small encoders). A simpler way to improve the performance, for example, would be to constrain the
random process such that the rotation’s orientation is altered for at least every second equilibrium state,

but not more than two timesin arow (not tested).

6.4 Conclusion

Idle tones are a serious problem for mismatch-shaping DACs, and it is generally necessary to use some
kind of dithering technique to break the patterns/tones. The tree-structure UE-M S encoder can be ef-
ficiently dithered, but the hardware complexity is considerable. The proposed dual-ERS encoders are
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Figure 6.13: Error signal from a random-orientation dithered ERS UE-MS DAC. The input signal d(k)

was a —12 dBFS 64-times oversampled AX.-quantized sinusoid. Compare with Figures 6.3 and 6.7.
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Figure 6.14: Error signal from arandom-orientation dithered ERS UE-MS DAC. The input signal d(k)

was a —1.5 dBFS 64-times oversampled AY.-quantized sinusoid. Compare with Figures 6.4 and 6.8.



6.4. CONCLUSION

-50

Average use 8/16
=75} ‘ ‘

-100¢

-125¢

~150 -
10 10 10 10

Averageuse 10/16
=751 ‘ /‘

-100¢
=125}

-150

Averageuse 12/16
-75¢ : « /‘

-100¢

-125¢

-150

10°° 10°° 10" 10°

-50

163

_75 L

-100¢

-1257

-150

Averageuse 9/16

107 10 10

_75 L

-100¢

-125¢

-150

Averageuse11/16

_75 L

-100¢

-1257

-150

-2 -1

10 10 10

Averageuse 15/16

1077 10" 10

0

Figure 6.15: Static performance of arandom-orientation dithered ERS UE-M S encoder. The plots show

the signal-band power versus 1/OSR for each constant value of d(k). Compare with Figures 6.5 and 6.9.
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significantly simpler to implement, and the performance is comparable. They have a slight tendency
to produce spread (partially dithered) idle tones, but these “tones’ will only appear at high frequencies
and they are seldom a problem. The lowest frequency at which these tones may appear is inversely
proportional to the number of unit elements, and they are hardly noticeable for encoders with only 4 of

8 unit elements. The next chapter will discuss a technique which voids the need for UE-MS DACs of

resolution higher than afew bits.

It is a key point that the shape of the error signal’s spectral power density is dependent on the relative
drive of the encoder. Thisimplies that the OSR cannot be made as low as expected/desired unless the
encoder is designed to have a larger-than-minimum output range. However, for severa reasons (cf.
Section 4.4), the average drive will typically be only 50% to 75% of the full range, and hence the effect

isusually not too troublesome*.

2The lower right and left plotsin Figures 6.5 6.9, and 6.15 can generally be neglected.



Chapter 7

Scaled-Element Mismatch-Shaping D/A

Converters

Mismatch-shaping DACs are the key element for the implementation of high-resolution wide-bandwidth
A/D and D/A (signa) converters. In Section 4.4.3, it was found that the SER performance of a unit-
element mismatch-shaping (UE-MS) DAC depends mainly on the technology’s matching index (cf.
Equation (4.28)), and not on the inherent resolution of the DAC. The hardware complexity of the digital
UE-MS encoder is, however, only reasonable if the inherent resolution is fairly low, say 5 bits or less,
and hence a AX quantizer/modulator is necessary to encode/interpolate the signal to an oversampled

low-resolution representation.

In Section 4.3.1, it was found that high-performance low-oversampled A quantizers can be imple-
mented using an only 5-bit representation of d(k), but notice that high-order loop filters and complex
digital multi-rate filters (to decimate the output) are required for the overall implementation. Similarly,
high-performance low-oversampled D/A converter systems can be implemented using an only 5-bit sig-
nal representation; but again, high-order AY. modulators and high-performance high-order analog filters
arerequired for theimplementation. In other words, the inherent resol ution represents atradeoff between
the complexity of the encoder and the complexity of the rest of the system. Clearly, the development of

simple high-resolution mismatch-shaping DACs will improve this tradeoff considerably, thereby facili-

165
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tating the implementation of much simpler high-performance data converter systems.

7.1 High-Resolution Mismatch-Shaping DACs

Simple high-resolution DACs can be implemented using an array of scaled elements (e.g., the binary-
weighted DAC discussed on page 56); the problem is to make them mismatch-shaping. In fact, it is
impossible to implement a mismatch-shaping DAC using only an encoder and an array of (inaccurately)
binary-scaled elements. To facilitate mismatch-shaping, the array of elements must fulfill the necessary
but not sufficient criteria that each nominal output value can be generated in at least two different ways
(i.e., the DAC must have sub levels [59]). Neither the analog nor the digital portions of the DAC,
however, need be very complex The following discussion will include an example of amismatch-shaping

DAC based on only two arrays of binary-scaled elements.

7.1.1 General Aspect of the Design of Mismatch-Shaping Encoders

The main issue in the design of scaled-element mismatch-shaping (SE-MS) DACs is, of course, the
design of the digital encoder, which preferably should be made as simple as possible. A good starting
point to solve this problem was provided in Section 4.4.1, where Equation (4.11) expresses the error
signal m (k) produced by ageneric DAC of the considered topology (cf. Figure 4.8). Theerror signal was
expressed as the sum of the gain mismatch errors (Zf;_ol [b; (k) [K; — Kd]]> and the local nonlinearity
errors (Zf:’ol INLZ»[bZ»(k)]>, which were defined with respect to the linear characteristics of the (sub)
DACs

P-1 P-1
m(k) = > [bi(k)[K; — Kql] + Y INL;[bi (k)] (7.2)
1=0 1=0

To make the composite DAC mismatch-shaping, it must be assured that (k) has only negligible power

in the system’s signal band. The errors can be considered individualy.

Controlling the Local Nonlinearity Errors. The local nonlinearity errors can be suppressed in the

signal band if the individual sub DACs are designed as either single-bit or mismatch-shaping DACs.
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In the general case!, most of the P sub DACs will be implemented as (low-resolution) UE-MS DACs.
Notice, however, that the UE-M S DACs heed not mutually employ unit elements of the same size; hence,
the number of possible output levels can be vastly higher than the total number of elements. The simplest

implementation will use a binary-weighted array of UE-M S DACs, each comprising only two elements.

Controlling the Gain Mismatch Errors. The nature of the system is that the parameters [K; — K]
are small?, but unknown constants. To obtain the mismatch-shaping property (of the composite DAC),

each of the signals b;(k) must be of the form

bi(k) = Li{d(k)} + h™" (k) * ni(k) (7.2)

where £; are linear operators, i~ (k) isthe impulse response of afilter® that suppresses the signal band
(cf. Section 4.4.4), and n;(k) are (preferably non-tonal) bounded signals. Provided that (7.2) is fulfilled

for al b;(k), the gain mismatch error my.i, (k) can be written in the form

e

-1

Migain (k) = [Ki — Ka] [Li{d(k)} +h7" (k) * ni(’f)]]

I

e

— ISk - Kagd}

Lz

= Lpac{d(k)} + h (k) x npac(k) (7.3

+ 1t (k) [PX_:I[K-—K : ]
% i — Kalni(k)

1=0

Il
<)

INew types of (e.g., serial) mismatch-shaping DACs are currently being developed; they can often substitute for the more

typical UE-MS DACs.
2The sub DACs are designed to have the same nominal gain, and [K; — K] expresses the ith DAC’s gain’s deviation from

the composite DAC'sgain K. K4 may be either the average value of the sub DACs' gains (asfor UE-M S DACS), or it may be
the average gain of a subset of the sub DACs (explained in the main text). The constants, [K; — K], are stochastic variables

with zero as the expected value. The standard deviations o; will in general be i = oprocess |/ Tt where || - || is an
appropriate norm (say, the peak-to-peak value), and oprocess 1S the technology’s matching index (with respect to the assigned

chip area).
3|t need not be the same typelorder of filter for all b;(k), but Equation (7.3) becomes confusing if this extra flexibility is

included. The main text will provide several examples of systems where k™! (k) is not the same for all b; (k).
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where Lpac{d(k)} is an implementation-specific linear operator, which usualy will be zero if the
DAC's gain K, is defined with respect to the actual implementation, and not as an absolute valué.
Notice that Lpac will be small because the coefficients [K; — K] are small. Hence, myg,in (k) will have

the properties required for mismatch-shaping DACs.

7.1.2 Mismatch-shaping Unit-Element DACs— Revisited

To shed some light on the implications of Equations (7.2) and (7.3), consider once again a mismatch-
shaping unit-element DAC with P elements. The UE-MS encoder produces P signals §(k) with the
same average value, hence £;{d(k)} = d(k)/P for all i. Unlessd(k) = 0 or d(k) = P, atruncation
will occur (because b;(k) € {0,1}), which is performed such that b;(k) — £;{d(k)} has the desired
property that b;(k) — d(k)/P = h= (k) * ni(k).

It may be observed that this point of view leads directly to the parallel UE-MS encoder that was pro-
posed independently by Richard Schreier [12] and Akira Yasuda [53] (shown in a dlightly modified
form® in Figure 7.1). The parallel UE-MS encoder is based on P individua AY modulators (similar
to tree-structure UE-M S encoders), and the correct number of unit elements are selected by varying the
truncators' threshold value®. Unfortunately, thisis, computationally, acomplex operation which involves

use of the “sort” function.

7.1.3 Complicated Scaled-Element Mismatch-Shaping Encoders

A scaled-element mismatch-shaping encoder can, in principle, be implemented in atopology similar to

that shown in Figure 7.1, where the individual b;(k) signas control elements of non-uniform values,

“More precisely, the DAC's signal transfer function is K + Lpac; hence, Lpac = 0 if the DAC is free of dynamics
and K, is defined with respect to the actual implementation. That this is not the only option is exemplified by AX DACs
implemented in the topology shown in Figure 3.24, which will have asignal transfer function close to, but not exactly, K. In
that case, Lpac Will be ahigh-pass filter function with only very little gain in the signal band.

®For simplicity and graphical purposes, the variable-threshold truncator is not sitable for actual implementations (cf. the
original publication [12]).

SProfessor Gabor Temes introduced the threshold-control el ement/idea during a private meeting.
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Figure 7.1: Parallel UE-MS encoder.

and where each A3 modulator is fed a fraction of d(k) which corresponds to the nomina value of
the respective element. The threshold-control mechanism, however, must be replaced by a vastly more
complex selection mechanism, which assures that the output of the loop filters remains bounded, and
that the sum of the selected elements’ nominal values equals d(k). Overall, the scheme becomes quite
complicated. Theinterested reader is encouraged to study [59].

7.1.4 Simple Scaled-Element Mismatch-Shaping Encoders

Simple encoders are generally characterized by decentralized calculations which can be performed in
parallel. A useful techniqueis, for example, to gather elements of the same nominal value in groups, and
let separate UE-M S encoders maintain the mismatch-shaping operation among each group of elements.
The UE-MS encoders can be construed either as part of the sub DACs, which is the approach taken
in the following discussion, or as part of the overall encoder, in which case there are as many sub

DACs as elements. Notice that, either way, this concept complies with the requirement to control local
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nonlinearity errors (cf. page 166).

Introducing the Master DAC. Anacther important technique, which can be used to simplify the en-
coder, is to alow only one of the linear operators £; to be nonzero. In other words, when using this
technique, one of the signals (say & (k)) is defined as the master signal, which isthe only signal that is
correlated’ to the input signal d(k); consequently, the composite DAC's gain is defined by the master
DAC’s gain,i.e., K; = K.

Notice that this technique complies with the fundamental operation of a AY. modulator, where the low-
resolution output signal isthe master signal. The new element (cf. Figure 7.2) isthat the truncation signal
e(k) is not discarded, but separated into one or more compensation signals §(k), # 0, which are D/A

converted individually and added to the D/A converted master signal. Thisway, the input signal d(k) is
not truncated and only partially represented by an oversampled lower-resolution signal, but instead re-
encoded and fully represented by the set of spectrally-coded signals §(%), which are better suitable for

direct D/A conversion with an array of inaccurately matched elements. In other words, the anal og output
signal f (k) will not include alarge truncation error signal (often called “the shaped quantization noise”),

but will include only the mismatch error signal m (&), which typically isquite small (cf. Equation (4.28)).

The master signal by (k) automatically fulfills the requirement (7.2), because

bo(k) = d(k)—e(k)
= d(k) — h™(k) * no(k) (7.4)

Hence, the only requirements that need be fulfilled to obtain the mismatch-shaping property are that the

compensation signals be of the form

P-1

e(k) = Y bi(k) (7.5)
=1

bi(k) = h7 k) xni(k), i #£0 (7.6)

’In the signal band, cf. Equation (7.2).
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and that the set of spectrally-coded signals (k) be D/A converted using single-bit and/or mismatch-
shaping DACs. Digital systems that fulfill Equations (7.4), (7.5), and (7.6) will hereinafter be called

spectral encoders.

The simplest way to fulfill (7.6) is to omit the separator and let & (k) = €(k). This technique will be
investigated in the next section, and a discussion of some more advanced separation techniques will

follow.

) —L o ey gy Pt fTbO(k)
- - Master Signal

U

= b2(k) . .
Separator | Compensation Signals

— bp_1(k)

Figure 7.2: Spectral encoder that separates d(k) into a master signal and one or more compensation

signals with only little signal-band power.

7.2 A Dual-Type-Element Mismatch-Shaping DAC

Figure 7.3 shows a mismatch-shaping DAC controlling elements 4, and A, of two different nominal
nominal values (with aratio of 8). The digital input signal d(k) is separated into & (k) and b, (k) by
the spectral encoder, which is implemented as shown in Figure 7.2, where b (k) = e(k). For graphic
simplicity, the subtraction block is shown outside the AY. modulator, athough it will naturally be im-
plemented as a part of the AY modulator.

Resolution of the Spectrally-Encoded Signals. The resolution of the three signals d(k), &(k), and

b1 (k) is an important aspect to consider. This is important because it determines how many elements
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Figure 7.3: Simple dual-type-element mismatch-shaping DAC.

(in Ag and A;) are required for the conversion of d(k) with a given resolution. Preferably, for asimple

encoder, the full-scale range of b, (k) should be small relative to the full-scale range of d(k).

As always for AY. modulators, the master signal & (k) must span at least the same range of values as
the input signa d(k), and usually the range must be alittle wider to allow some fluctuation in (k) (cf.

Section 4.3.1 and Figure 7.2). In the ideal case, & (k) will for al k attain one of the two values that are
the closest to the value of d(k), in which case the full-scale range of 4 (k) will be about twice as wide
as the step size of by(k), i.e., a 7-bit input signal can e.g. be spectrally encoded into two 4-bit signals
whereby the unit elementsin .A4; will be 8 times smaller than the unit elementsin A,, and the 128 levels
be represented using only 32 elements. The full-scale range of & (k) will, however, depend highly on
the design of the AX modulator’s loop filter H(f).

7.2.1 Designing the Delta-Sigma M odulator

The full-scale range of e(k) (cf. Figure 7.2) is a main concern in the design of the spectral encoder’s
AY. modulator. To avoid unnecessary? large values of ¢(k), the feed-forward branch (from d(k) to
the input of the truncation element) should always be included in the topology (for reasons discussed on
page 76). Assuming, therefore, that the AY modulator’s topology isasshownin Figure 7.2, the only free

parameters are the loop filter's transfer function H( f) and the master signal’s step size and resolution.

8Unless the feed-forward branch is implemented, the full-scale range of (k) may, for any loop filter, be at least as large as

the full-scale range of d(k), assuming that d(k) is not spectrally constrained.



7.2. ADUAL-TYPE-ELEMENT MISMATCH-SHAPING DAC 173

If the performance is evaluated only with respect to the full-scale range of ¢(k), it would be optimal to

use afirst-order AY. modulator

Z—l

=1, Wheez= 2/ fs (7.7)
4

H(f)

for which the full-scale range of €(k) is only twice the master signal’s step size. A reason why this may
not always be the best design is that first-order AY. modulators are extremely tonal, and hence the gain

error
mgain(k) = bl (k)[Kl — K()] (78)

will include gain-error idle tones’, because b, (k) = €(k) includes many strong idle tones that are not

perfectly canceled if [K; — K] isnonzero (it isusualy in the order of —60 dB).

Avoiding Gain-Error Idle Tones. Essentialy, gain-error idle tones can be prevented (suppressed) in
one of two ways. Either ¢(k) can be separated into several compensation signals 4(k),: # 0 in a
nonlinear and aperiodic way (which may turn out to be arisky business), or they can be removed at the
source by designing the A modulator to be idle-tone free® using dither [1], chaos [44], or any other of
the well-know techniques. The latter approach is usually much preferable, although it may increase the
magnitude of e(k).

For dither!? to be effective, it should have a uniform probability density function in a range which
is as wide as the master signal’s step size. It is often claimed that the use of dither in multi-bit A%
modulators is “harmless’ because it is small relative to full-scale output and hence does not noticeably
affect the stability. This is often true, but dither is actually quite harmful in this context, because the
dither’s magnitude will add linearly to the magnitude of e(k). For example, in afully dithered first-order
AY. modulator, the full-scale range of e(k) will be four times the master signal’s step size, and hence the

compensation DAC A isrequired to have twice an many unit elements as in the un-dithered system.

®In this case they do not originate from the UE-MS DACs, but directly from the spectral encoder.
OThis is usually not too difficult when the master signal is multi-bit.
"Noise added to no (k), see [1] for details.
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Another technique to suppress idle tones is to use a higher-order (i.e., second-order or higher) loop
filter and possibly make it dightly chaotic. It iswell understood that idle tones cannot be fully avoided
in this way [1], but considering that the tones will be further suppressed by the gain-matching factor
[K1 — Ky, cf. Equation (7.8), they need only be suppressed to (say) —80 dBFSwhich is quite possible.
The high-order loop filter should not be designed with ahigh NTF,,,, value (cf. Section 4.3.1), because
that will vastly increase the magnitude of (k). The loop filter can, however, easily be of high order
without increasing the magnitude of e(k) noticeably. For example, Figure 4.6 shows that a 6th order
AY. modulator with NTF,.x = 2 will have afull-scale range of e(k), which isonly dightly larger than
twice the master signal’s step size. Notice that the compensation DAC need not employ a power-of-two
number of unit elements; A; can very well include (say) 22 unit elements. The use of high-order AY.
modulators also has the advantage that €(k) will be a high-order shaped signal, hence even a substantial
gain error [K; — K] is acceptable with respect to the signal-band performance. In other words, local
matching (i.e., within Ay and A;) is more important than global matching (i.e., K, relative to K;),

which is an important observation to make use of when the circuit isto belaid out (cf. page 120).

7.2.2 Parallel Work Published

Independent of this work, Robert Adams from Analog Devices Inc. has invented and published [35]
a mismatch-shaping DAC identical to that shown in Figure 7.3. The published system was a high-
resolution DAC where the 20-bit input signal was first interpolated to a 6-bit representation using a
traditional second-order (Candy-structure) A> modulator. This 6-bit signal was D/A converted using a
scal ed-element mismatch-shaping DAC of the type shown in Figure 7.3, where the spectral encoder was
of first order. The resolution of the master DAC was 3 bits and the resolution of the compensation DAC

was 4 bits.

Measured Performance. The system worked very well (113 dB performance was reported), although
the used low-order spectral encoder very well could have caused problems (discussed above). During the
guestion period after the presentation, the speaker’s attention was drawn to the tones that were measured

at the —110 dBFS level. They were claimed to be idle tones from the interpolating A3 modulator, and
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that they had since been avoided by dithering the modulator (second silicon). This may be the correct
explanation, but they could also have been idle tones from the used spectral encoder’s first-order AX
modulator. The speaker, however, specifically pointed out that idle tones cannot originate from this
source, because the interpolated signal will include an aperiodic component (the truncation error). That

isincorrect.

Simulation Resultsfor a Similar System. Figure 7.4 shows the simulation results from asimilar sys-
tem that was designed for operation at OSR = 10. The red traces show the truncation error from the
fully-dithered third-order AY modulator (NTF,.x = 4) used to interpolate the signal to 8-bit repre-
sentation. The green traces show the nonlinearity error from the master DAC, which was designed as
a 20-element dual-ERS dithered mismatch-shaping DAC. This error dominates the signal-band perfor-
mance (which it should for a good design). The blue traces show the combined gain and nonlinearity
error from the compensation DAC, which was designed as a 40-element dual-ERS dithered mismatch-
shaping DAC. Notice the many spurious tones that are part of this error signal. These tones originate
from idle tones in the spectral encoder’s first-order A3 modulator; they disappear if the encoder isjust
partially (0.3) dithered. The compensation DAC's error signal is somewhat smaller than the master
DAC's error signal, because the master signal is about 20 dB larger than the compensation signal.

How to Improve the System. Consider again the high-resolution DAC system discussed above. In
Figure 7.4 it can be observed that the interpolating AY: modulator’s truncation error is dominating in
the Nyquist band, and it will typically be necessary to use an anaog filter to smooth out the output
waveform. Clearly, it would be preferable if the high-resolution input signal could be D/A converted
directly, such that the master DAC's error signal would be the dominating error in the entire frequency

spectrum. This way, the analog filter could be omitted and the system’s performance improved.

Figure 7.3 shows a good concept for the implementation of mismatch-shaping DACSs, but if d(k) is of
more than 7 to 8 bits of resolution, the UE-M S encoders will have to be large and the complexity of the
digital circuitry becomes of great concern. Hence, simpler mismatch-shaping encoders are sometimes

required. To be commercialy interesting, the mismatch-shaping encoders complexity should be only
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Figure 7.4: Simulated performance of a D/A converter system similar to that presented at ISSCC 98.

Notice the idle tones in the compensation DAC's error signal.

linearly dependent on the resolution (in bits), and the UE-M S encoders should each be of less than 3 to

4 bits of resolution. Several techniques will be proposed in the following.

7.3 Tree-Structure Scaled-Element Mismatch-Shaping DACs

Consider the DAC structure shown in Figure 7.3. Thetwo DACs converting iy (k) and b (k) are required
to be mismatch-shaping, but they need not be UE-MS DACSs. Either of them can be a scaled-element
mismatch-shaping (SE-MS) DAC, implemented e.g. as shown in Figure 7.3. In other words, the structure

can be used recursively in asymmetrical tree structure as shown in Figure 7.5.

The first AX modulator separates d(k) into a (say) 7-bit internal master signal and a corresponding
(say) 7-bit truncation signal €(k). Theinternal master signal is D/A converted with a SE-MS DAC, here
consisting of the second AY. modulator and two scaled 4-bit UE-MS DACs. The truncation error signal
is aso D/A converted with a SE-MS DAC, here consisting of the third AYX modulator and two scaled
4-bit UE-MS DACs.
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Figure 7.5: Symmetrical tree-structure scaled-element mismatch-shaping DAC

Verification of the Mismatch-Shaping Property. The fundamental property of the AYX modulators
isthat e(k), by (k), and bs(k) will be of the form (7.6), and since by(k) = e(k) — bs(k), it follows that
by (k) will be of the same form (7.6). Hence, because d(k) = Z?:o b;(k), the three AYX modulatorsin
combination can be construed as a spectral encoder that separates d(k) into the master signal (k) and
the three compensation signals b, (k), ba(k), and bs(k). Notice that the topology is somewhat similar
to the high-resolution DAC discussed on page 174. The red traces in Figure 7.4 show the discarded
truncation signal (&), which now is compensated for by including the third AX modulator and the two
extra 4-bit UE-MS DACs shown in Figure 7.5.

Designing the Delta-Sigma Modulators.  To avoid gain-error idle tones, e(k) should be nearly idle-
tone-free, which (as discussed on page 172) is best obtained by designing the first AX modulator with
a higher-order loop filter with alow NTF,,, value. However, because the internal master signal repre-
sents the input signal d(k), gain-error idle tones can also originate from the second AX modulator (cf.
Figure 7.4); hence, it should also be designed with a higher-order loop filter. On the other hand, the
truncation signal e(k) consists of only shaped quantization noise (an ARMA pseudo-stochastic process),
which is usualy sufficiently “random” to prevent idle tones in the third AX modulator, even if the loop

filter is of only first order (7.7).
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7.3.1 Asymmetrical Tree Structures

SE-M S encoders can also be designed in asymmetrical tree structures. In particular, a master A mod-
ulator can be used to interpolate d(k) directly to the resolution desired for the master signal b(k), in
which case internal master signals (asin Figure 7.5) are avoided. The advantage of this approach is that
only the master A modulator will be likely to produce gain-error idle tones, hence al but that A

modulator can be designed with first-order loop filters.

Figure 7.6 shows a SE-MS DAC based on the above concept. The master AY. modulator can be based
on a (say) second-order loop filter with a NTF,,.x value of (say) 1.5. The 4-bit master signal & (k) is
D/A converted with a dithered UE-MS DAC, and the truncation signal e(k) is D/A converted with a
symmetrical SE-MS DAC of the type shown in Figure 7.5. The first, second, and third compensation
AY. modulators can be implemented as first-order modulators without encountering significant idle-tone

problems.

The ratio of the unit elementsin A, and A, is as large as 2048, which is more than sufficient, because
the master DAC's error signal mq (k) generally'? will be larger than the analog equivalent of & (k). In

other words, the least-significant DAC usually need not be mismatch-shaping, and quite often it makes
senseto simply discard is. Thisis particularly the case when the third compensation A modulator is of
second order (although it is simpler to implement a small binary-weighted non-mismatch-shaping DAC

for the D/A conversion of by (k)).

Implementation of the Spectral Encoder. Figure 7.7 shows an implementation of the spectral en-
coder used for the compensation DAC in Figure 7.6 . The three first-order AY. modulators are imple-
mented in the so-called error-feedback topology [1], whereby only two adders and a delay element are
needed for the implementation of each modulator (the rectangles with adiagonal line across represent a

hardwired separation in most- and least-significant bits).

2Unless the technology’s matching index (total-area relative standard deviation) is smaller than about 1/2000.
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Figure 7.6. Asymmetrical tree-structure scaled-element mismatch-shaping DAC.
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Figure 7.7: Implementation of the compensation DAC's spectral encoder (cf. Figure 7.6).
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7.3.2 One-Sided Tree-Structure

Figure 7.8 illustrates yet another way to design spectral encoders. In this case, only one side of the
tree structure has been “expanded.” Notice the very regular topology, and that the signals’ resolution is
reduced gradually.

16 Master 4 by (k) f(k)
d(k) —= Delta-Sigma -
Modul ator
¥
14 e(k)

First Comp. | 4 b1 (k)
» Dedta-Sigma
Modulator

Second Comp.| 4 by (k)
Deta-Sigma
Modulator

4-bit@92

Third Comp. | 4 by (k)

— Dedta-Sigma ————»
Modul ator

4-hit@12
Figure 7.8: One-sided tree-structure scaled-element mismatch-shaping DAC.
Simulated Performance. The one-sided tree-structure has been simulated for the following condi-

tions. The input was a 10-times oversampled sinusoid of magnitude 0.7 - 25, which defines 0 dBFS

in Figure 7.9. The total-area matching index was assumed to be 0.1%, and each element’s variance was
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assumed to be inversely proportional to the element’s value relative to the sum of all the elements. The
master A3 modulator was of second order (NTF,.x = 1.5) and the three other AY. modulators were of
first order (NTF.x = 2). €(k) was represented by 14 bits to avoid unintentional truncation, but since
it would not span the whole range, the elements in .4, were chosen 6 and not 4 times smaller than the

elementsin A,13.

The black tracesin Figure 7.9 show the simulated overall performance, whereas the colored traces show
the combined gain and nonlinearity errors from the individual DACs (the colors are chosen according
to the color code used in Figure 7.8). The master DAC’s nonlinearity error limits the performance in
the entire frequency spectrum, and 100 dB performance was obtained at about 30 times oversampling.
Notice that the truncation error caused by the third compensation AY. modulator is not dominating (cyan
trace my (k) = ba(k) Ko, where by (k) = d(k) — 30_, bi(k)).

j Output Signal

50} : : R =50+ - overal Error Signa mo (k)

~100 W ~100}
-150 > = "o -150 > = "o
10 10 10 10 10 10
(a) Spectral power density versus frequency (b) Signal-band power versus /JOSR

Figure 7.9: Performance of the one-sided tree-structure SE-MS DAC shown in Figure 7.8.

3The simplest way to implement this technique isto multiply e(k) by 3/2 (or 5/4 for amore aggressive design) and set the
gain of the compensation DAC to 2/3 (or 4/5) of the master DAC'sgain Ko, simply by scaling the elements accordingly.
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7.4 Filtering Scaled-Element Mismatch-Shaping DACs

The following refers to Figure 7.2. The design of the master DAC is a separate issue, but generaly it
is preferable to implement the compensation DAC as simple as possible, which usually implies that the
compensation signals should be of very low resolution. A tree-structure spectral encoder can be used
to separate the truncation signal €(k) to almost any low resolution (two bits), but doing so is a tradeoff
between the spectral encoder’s complexity (cf. Figure 7.7) and the UE-MS encoders’ complexity (cf.
Figures 4.10 and 6.10). This section will propose an even simpler filtering spectral encoder, where the

separation of ¢(k) into 3-level compensation signals is very simple to implement.

TheFiltering Principle. In section 7.1.4 it was discussed that the compensation signals should be of
the form (cf. Equation (7.6))

bi(k) = bt s ni(k), i #0 (7.9)

and in Figure 7.2 it can be observed that e(k) = h~ (k) * no(k), where h~! (k) is the impul se response

of 1/H(f). Because filtering isalinear operation, it follows that

P-1
no(k) =Y mi(k) and  e(k) =h ' (k) xno(k) (7.10)
=1
Y
P-1
e(k) = bi(k) and  bi(k) =h (k) xni(k), i#0 (7.12)

which means that if ng(k) is separated in any way into a set of signals n;(k),7 # 0, and these signals
are filtered individualy by 1/H (f), then the outcome will be a set of compensation signals (k) with
the desired property'* (7.9). To simplify the circuit, the compensation signals should preferably be of
low resolution. This can be obtained, for example, if n;(k),i # 0, are single-bit signals and A~ (k) is
afirst-order difference filter. The following discussion will provide several examples of the use of this

very powerful concept.

For the system to be implementable, h~* (k) must be a causal filter, which requires that H(f) be non-delaying. The
feedback loop, however, must include one sample of delay for the AYX modulator to be stable. This delay is best inserted after
the loop filter H(f) and before no (k) is added to d(k). See the main text for several examples.
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7.4.1 Minimalist Scaled-Element Mismatch-Shaping Encoder

The simplest approach to use the filtering principle is to design the master AY modulator with afirst-
order loop filter and separate ng(k) bitwise. Figure 7.10 shows this system implemented using the
error-feedback topology. The master signal & (k) is here chosen as a single-bit signal, hence mismatch
errors will originate only from the compensation DAC. The compensation signals §(k),i # 0, are 3-
level signals generated as the first-order difference of the bit-wise separated signa (k). Figure 7.11
shows how each branch of the compensation DAC can be implemented; clearly, the overall complexity
islow. Notice that the DAC elements consist of two nominally identical binary-scaled arrays of analog

sources (less one element).

d(k) bo (k)
. . MSB .
N 4 1 hit
zil no(k)
N
| 1 (k) b (k) 1
; e ol |
| * 1 bit 3levels |
| na (k) ba(k) |
: RS I S SN ;
: * 1 bit 3levels |
3 [ ] [ ] [ ] [ ] :
| ° ° ° o
i ° ° ° o
| f (k) b1 (k) 1
; el |
| 1 bit 3levels |
1 n (k) b (k) |
l 1— 27! |
[ 1 bit 3levels |
| Compensation DAC |

Figure 7.10: Minimalist first-order binary-scal ed-elements mismatch-shaping DAC.
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Figure 7.11: State machine implementing first-order differentiation and mismatch shaping.

7.4.2 Practical Filtering Scaled-Element Mismatch-Shaping DACs

The SE-MS DAC shown in Figure 7.10 may be ssimple, but the topology is not the most suitable for the
implementation of high-performance DACs. The problem isthat the first-order master AYX modulator is
amost certain to generate idle tones, and gain error will make them leak to the output f (k). Asusual,
this problem can be avoided by increasing the order of the loop filter; but to minimize the resolution
of the compensation signals b;(k),i # 0, first-order difference filtering of n;(k) is preferable. These
two requirements can be fulfilled simultaneously when the spectral encoder is designed as shown in
Figure 7.12. The basic idea is that the loop filter is realized as a cascade of two stages, where the first
stage hasthe desired transfer function and the second stage is designed to keep the AY: modulator stable.
The loop filter's NTF,,.x value should be fairly low (say 1.5) to assure that the full-scale range of (k)

is reasonably small. The full-scale range of ny(k) is proportiona to the step size of the master DAC.
For afirst-order loop filter (cf. Figure 7.10) ny (k) will be as large as the master DAC’s step size, but for
higher order loop filter's it may be up to about 1.5 times larger (for low values of NTF,.x). Although

it usualy is not necessary, the presented design incorporates a safety factor (to prevent unintentional
truncation) by using elements of the same value in .4, and .A;. The design can be improved dlightly by
increasing the master DAC's step size by about one third to 2=, The AX. modulator must then be
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modified accordingly, but that is a simple matter.
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Figure 7.12: Improved SE-MS DAC that is less subject to gain-error idle tones.

7.4.3 Reducingthe Gain-Error Sensitivity

Usually, it is the master DAC's error signal that limits the performance. This is, however, not the case
when the master DAC islinear, e.g., if by (k) isasingle-bit signal, in which case the compensation DAC’s
error signal will dominate. Because this design approach bears someinterest (discussed later), it isworth

while to consider how the compensation DAC’s error signal can be minimized.

The compensation DAC’s error signal isthe sum of theinternal DACS' error signals my (k), mo(k), ... ,

my (k). Each of the error signals consist of two parts: the gain error §(k)[K; — K] and the local
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mismatch error. The local mismatch errors will almost always be first-order shaped (when first-order
UE-MS encoders are used). The gain errors are, however, likely to be larget®, because they depend on
global matching of electrical parameters, and because the individual DACs often will be implemented
with some physical distance. It is, therefore, preferable if the compensation signals (k) are more-than-

first-order shaped, i.e., of the form (7.9), where h=! (k) is ahigher-order filter (cf. Figure 4.11).

Clearly, second-order shaped compensation signals 4 (k) can be obtained by designing the master AX
modulator’s first filter stage as a second-order integrator (cf. Figure 7.12) and employing second-order
difference filters in the compensation DAC. This is, however, not a good idea. The problem is that the
magnitude of ny(k) will increase (even for the same NTHR,,.x value), and the second-order difference
filters will further increase the magnitude of the compensation signals by afactor of two. This way, the
reduction of the gain error’s signal-band power, due to ahigher-order shaping of §(k), islost because the
Nyquist-band power of the error signalsisincreased. Thisis especially a problem for the local mismatch

errors, which will remain first-order shaped.

Fortunately, there are other and better ways to higher-order shape the compensation signals. In Fig-
ure 7.12, ny(k) isfirst-order shaped (because it is the input signal to an integrator for which the output
signal is bounded), but the spectral composition isimmediately destroyed by splitting the signal bitwise.
Figure 7.13 shows how the spectral encoder can be modified such that m (k) inherits the first-order-
shaped property of ng (k). The property isinherited, because n; (k) is the difference between ny (k) and
the first-order difference of nj(k), which are both first-order shaped!®.

The Nyquist-band powers of the error signals are largely proportional to the square root of the corre-
sponding DACs' step size. Hence, if .4; includes (say) 8 elements, it is mainly the gain error of my (k)
that is of concern. In other words, for ssimplicity, it would be better if the secondary compensation sig-
nas, bo(k),bs(k),... ,bn(k), could be of only 3-level resolution, even if that were to imply that they
would be only first-order shaped. This simplification can be obtained, for example, by differentiating

ng (k) before it is split bitwise (not shown). An even simpler technique to obtain the same result is shown

BNyquist-band power.
16Except for the differentiation of ng(k), the compensation DAC is identical to the minimalist SE-MS DAC shown in
Figure 7.10).
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Figure 7.13: SE-MS DAC where the gain-errors are second-order shaped.
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in Figure 7.14. In essence, the topology is equivalent to that shown in Figure 7.3, where the compensa-

1 bo (k)
+
+ I -AO
1bit | 1 hit@2
1 na (k) by (k) 1
i 3 bit i
1 na (k) by () :
I p—— ] zil A I
| * 1 bit 3levels |
: [} [ J [ J [ J :
| [ ] [ ] o [ ] |
: ° ) ) ) :
3 f ny—1(k) b1 (k) 3
| +> 1-— 2_1 |
: 1 bit 3levels :
1 n (k) b (k) :
I —— ] _ zfl —_—— I
| 1 bit L [3leves |
| Compensation DAC |

Figure 7.14. Alternative to Figure 7.13 where the compensation signals are shaped according to their
magnitude.

tion DAC isimplemented as the minimalist SE-MS DAC shown in Figure 7.10. The main compensation
signal ny (k) will inherit the spectral composition'” of ¢(k) because gain errors within the compensation
DAC can be referred to the secondary compensation signals by (k), bs(k), ... , by (k). Inprinciple, afew
of the least significant compensation signals can be gathered in one signal (of say 4-bit resolution) and

|n this case, it is second-order shaped.
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D/A converted with a non-mismatch-shaping DAC. The local mismatch error from this DAC will not be

shaped, but be a very small pseudo-white-noise signal (the gain error remains first-order shaped).

7.5 Second-Order Scaled-Element Mismatch-Shaping DACs

In principle, itisvery smple to design second-order SE-MS DACS, just use second-order UE-MSDACs
and assure that the compensation signals are at least second-order shaped (e.g., using any tree-structure
topology with second-order A3 modulators, or an appropriate filtering structure, such as that shown
in Figure 7.13). This approach is, however, not too attractive, because second-order UE-MS shaping
encoders are complicated to implement and only truly effective if the OSR is 25 or larger. The purpose
of increasing the order of the mismatch shaping is typicaly to allow the use of lower OSR, hence the
second-order structures discussed above are only relevant in extreme situations (or if better and simpler
second-order UE-M S encoders are invented). The following will discuss atechnique by which effective

second-order mismatch shaping can be obtained without using second-order UE-M S encoders.

7.5.1 The Generalized Filtering Principle

Consider again the SE-MSDAC shown in Figure 7.13. If, for example, the master signal & (k) isof 1-bit
resolution, the master DAC can be made linear. In that caseg, it is entirely the compensation DAC that
limits the system’s performance. The compensation DAC's gain errors can easily be made second- or
even higher-order shaped (cf. Section 7.4.3), but in the absence of good second-order mismatch-shaping
encoders, the compensation DAC’s local nonlinearity errors will be only first-order shaped. If, however,
the compensation DAC’s output is filtered (differentiated) in the analog domain, the local nonlinearity
errors will be shaped also by this filter’s transfer function. This way, efficient second- or higher-order

mismatch-shaping is made feasible; it can be implemented as shown in Figure 7.15.
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Figure 7.15: Second-order filtering SE-MS DAC employing analog filters.
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7.5.2 TheFilter-Mismatch Problem

The generalized filtering principle has similarities to the MASH structure [1] and its cousin — the dual-
guantization DACs [60]. Since the performance of these circuitsis critically dependent on matching an
analog filter's transfer function to the (master) AX modulator’s (noise) transfer function, a discussion of

thisissue is found to be appropriate.

The MASH structure was discussed!'® on page 89, and it was concluded that the AX: modulator generally
should not be chosen of an order higher that two, because the impact of mismatch of the analog/digital
filters' transfer functions on the system’s performance will increase with thefilters' order. The argument
that filter mismatch is a problem!® even for only second-order systems is supported by the many circuit-

level techniques devel oped to improve the matching [60].

The reason why filter mismatch is much less of a problem when using the generalized filtering principle
is that the performance, even for high-order master AY. modulators, does not rely on matching of high-
order filters. Consider Figure 7.15. It can be observed that therelation d(k) = &y(k)+[no(k)—no(k—1)]

is a consequence only of ngy(k) is the accumulation of d(k) — by(k). In other words, the relation is
completely independent of the second filter stage of the master AX modulatof®. Hence, the analog filter

isto match only the master AX: modulator’ s first filter stage (which typically isof low order), and not the
modulator’s high-order noise transfer function. As opposed to MASH and dual-quantization DACSs, the
signal-band performance of generalized filtering DACs will improve when the master AY modulator’s
order is increased?, because ny(k) will have increasingly less signal-band power. Consequently, the
cancellation process need not be relied upon in the signal band. In the extreme case, such as for very
poor filter matching and master A modulators of high order, the compensation DAC can be construed
as asimpler substitute for the smoothening filter shown in Figure 3.9. However, usually it is possible to

obtain quite good matching of low-order filters, whereby state-of-the-art performance can be obtained

80nly the MASH quantizer structure was discussed, but the filter-matching issue is the same for MASH DACs.

It isonly aproblem if you aim at high (say more than 85 dB) performance.

DThe second filter stage affects mainly the magnitude (through NTFu...) and the spectral composition (through the filter's
order) of no (k).

ZLAssuming that the master A modulator’s first filter stage and the analog filter remains the same.
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even when using low-order master AY. modulators.

7.5.3 Variations

Clearly, the signals from the compensation DAC’s sub DACs can be filtered either before or after they
are summed?. In aminimalist filtering DAC, see Figure 7.16, ny(k) will be converted by an ordinary
(e.g., binary-weighted) DAC and the outpuit filtered and added to the output of the D/A converted master
signal. Because ny(k) is amost uncorrelated with d(k), and because n, (k) has a broadband spectral

composition, nonlinearity of the compensation DAC will cause a white-noise-like error signal which
will be filtered by 1/H; (f) and which, therefore, will appear shaped in the output signal f(k). Hence,
the minimalist filtering DAC can beinterpreted as a (UE-M S-encoder-free) mismatch-shaping DAC, and
it can in principle be implemented of any high order. Ultimately, the reason why it makes most sense to
implement the generalized filtering DAC with a mismatch-shaping compensation DAC (i.e. as shown in
Figure 7.15) is because it is very simple to do so, and because the magnitude of ry (k) and the required

order of H;(f) will belower (and the circuit, therefore, better and simpler).

1 by (k)
k)| ~ L
T?é_» Hi(f) Hy(f) —»é—» 1bit> Ao
1-bit@2™
no(k)
Any 1
DAC Hy(f)

Figure 7.16: Minimalist DAC implemented according to the generalized filtering principle.

20r in groups, if that for some reason is preferable. For switched-capacitor implementations, it is almost always preferable

to implement the first differentiation separately for each DAC element (cf. Figure 7.17).
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7.5.4 Switched-Capacitor mplementation

Figure 7.17 shows a switched-capacitor (SC) implementation of the second-order SE-MS DAC shown
in Figure 7.15 (the spectral encoder is not shown).

The analog output signal f (k) is represented as charge pulses dumped to the opamp’s virtual-ground
node, and it islow-pass filtered and converted into avoltage signal ¢ (k) by the switched-RC feedback
network. Thelinearity of the D/A conversion does not particularly depend on the ideality of the provided
virtual ground potential, but (of course) the SC circuit must meet the overall performance requirements.

The summation of the individual charge-pulse signals ¢ (k) will beideal (charge conservation).

The master DAC will (in clock phases ®; and as afunction of &(k)) provide charge pulses of +V,¢C,

hence the system’s gain is

2‘/1“efc _ ‘/refc
9N T 9N-1

K;=Ky= (7.12)

It isimportant that ¢y(k) isin linear relation with & (), hence the usual precautions for the implemen-
tation of single-bit SC DACs should be observed. It is particularly important that the load seen by
the reference voltage is independent of & (k) (see [1] for a detailed discussion). Also, the Haigh-and-
Singh delayed-clock-phases clocking scheme should (as always for high-performance SC circuits) be
employed to prevent signal-dependent charge injection and clock feedthrough [29].

The primary compensation DAC is implemented by a UE-MS driver and 8 nominally-identical capaci-
tors® of capacitance C/4. The capacitor terminals that are connected to the virtual-ground node are not
switched, hence the charge-pulse signal ¢ (k) will be the first-order difference of the weighted voltage
signal provided by the UE-M S driver. Each capacitor is driven by a single-bit logic signal (with the step
size of 2V=2) which is buffered to &V, (as shown for by (k) in the master DAC). Hence, each capacitor
will provide charge pulses of either —2VC/4, 0, or 2V,C/4, and the gain of this DAC will be

_ 2Vrefc/4 _ VietC

L= "9N-—2 ~ 9N-1 (7.13)

36 capacitors would in principle be enough, because b; (k) does not span the full range. 8-element UE-MS encoders are,

however, particularly simple to implement.
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Figure 7.17. Switched-capacitor implementation of the analog part of the second-order filtering SE-MS
DAC shown in Figure 7.15.
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which conforms with the master DAC’'s gain.

The analog-domain differentiation will match the digital-domain integration exceptionally well, because
the ideality of the analog filter relies only on the electrical insulation of each capacitor’s two terminals.
In other words, unless the sampling frequency is extremely low and the capacitors' leakage current large
(e.g., caused by high-temperature operation or a very bad technology), the analog filter can be assumed
ideal for al practical purposes.

The secondary compensation DACs are implemented similar to the primary compensation DAC.

Simulation Results. The circuit was simulated (with MATLAB) using the assumptions outlined on
page 180. The results are shown in Figure 7.18. The black traces show the overall performance. The
error signal is second-order shaped (the signal-band error power decreases 50 dB per decade of oversam-
pling), and it is observed that 100 dB performance is obtained at 10 times oversampling (the target for
this work). Because the error signa is higher-order shaped, the OSR required for 100 dB performance

will be less dependent on the technology’s matching index.

The master DAC is linear, hence it produces no local nonlinearity error. The master DAC, however,
defines the system’s gain K;, which should carefully be matched to the (primary) compensation DAC's
gain to minimize gain errors. The primary compensation DAC’s combined gain and local nonlinearity
error is shown with green traces. This is the dominating error source, which it should be because the
primary compensation signa ¢ (k) is somewhat larger than the secondary compensation signals. The
combined error signal from the secondary compensation DACs is shown with blue traces (only the 8
most-significant secondary compensation DACs were included). Notice the small gain-error idle tones
that occur at high frequencies. These tones are so small that they usually do not represent a problem, but

it isinteresting to observe that they indeed do exist.

In comparison with the previous shown simulation results (Figures 7.4 and 7.9), the error signa’s
Nyquist-band power is approximately 6 dB larger. This is because the primary compensation DAC,
which produces the dominating error signal, can produce a signal which is 6 dB larger than a full-scale

output signal. Thisisin itself not a major problem (because the error signal is second-order shaped);
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but since the magnitude of ¢, (k) is proportional to the master DAC's step size, 6 dB improvement (in
the entire frequency spectrum) can be obtained if alinear 3-level master DAC can be realized (discussed
below).

To facilitate comparison, Figure 7.19 shows the equivalent simulation results for the system shown in
Figure 7.13. Here, the first-order-shaped local nonlinearity errors are dominating, hence the perfor-
mance is not as good as in Figure 7.18. The error signal’s Nyquist-band power is equaly high, so the
performance is not even as good as for the other proposed first-order shaping systems (compare Fig-
ures 7.9 and 7.19). As discussed above, this first-order system may, however, perform better than the
other proposed first-order systems because the gain errors are second-order shaped. In actual implemen-
tations, gain errors are likely to dominate the local nonlinearity errors (because of physical distance in

the layout), but this parameter was not included in the stochastic model used for the simulations.

Figure 7.20 shows the second-order SE-MSDAC’stime-domain output signal f (k) for a saw-tooth input
signal d(k). Clearly, the error signal is very small, and there is hardly a need for afilter dedicated to
suppress it further (for example, for audio applications, the human ear can maintain this function). It
should, however, by understood that the signal shown is highly oversampled, and that there may be a
need for afilter dedicated to suppress replica spectral images (cf. Section 3.2.1).

Experimental Work. A fully-differential version of the SC DAC shown in Figure 7.17 has been im-

plemented in cooperation with MEAD Microelectronics in Switzerland.

The spectra encoder and the primary compensation DAC’s UE-M S encoder was implemented using an
external FPGA, and the SC circuit was implemented in a 5-Volt 0.8um CMOS technology. Because
the DAC's error signal has only little Nyquist-band power, the voltage signal (k) was DT/CT con-
verted directly with a zero-order holding circuit (cf. Figure 3.9). A replication-rejection filter was not

implemented.

The target performance was 100 dB SNDR at 10 times oversampling with a sampling frequency in the
range from 400 kHz to 1 Mhz (i.e., a signal bandwidth of 20 kHz to 50 kHz). The targeted low OSR
and high SNR requires that large signal capacitors be used to avoid thermal-noise limitation; the master
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Figure 7.18: Simulated performance of the second-order SE-MS DAC shown in Figures 7.15.
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Figure 7.19: Simulated performance of the first-order SE-MS DAC shown in Figure 7.13.
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Figure 7.20: Time-domain performance of the second-order SE-MS DAC shown in Figure 7.15.

DAC'’s capacitor C' was designed with a nominal value of 11.25 pF. Although noise calculations for
the system lead to a result somewhat similar to that found in Section 4.5.1, there is a main difference
due to the compensation DAC’s relatively large capacitive load of the opamp’s virtual -ground node (cf.
Figure 7.17). This implies that the compensation DAC’s voltage reference Vs must be very clear??,

which is assured by means of an external passive low-pass filter. The compensation DAC’s capacitive
load will also cause some magnification of the opamp’s input-referred noise, so the opamp had to be

designed very carefully.

The layout was optimized with respect to matching the gain of the master DAC to the gain of the primary
compensation DAC. However, because the error signal is second-order shaped, matching of the capaci-
tors was one of the least difficult problems to solve; for a 20kHz bandwidth, the OSR can be increased
from 10 to 25, which will improve the SER performance by 20 dB. Besides the difficulty in achieving
the target noise performance, the most difficult aspect of the design was the DT/CT conversion. At 10
times oversampling, the maximum step size of a full-scale sinusoid at the edge of the signal band will
be approximately one third of the supply voltage. It is very difficult to design CT analog circuits that

are able to handle step transients of this magnitude linearly, but agood solution is believed to have been

%The opamp's integrating feedback capacitor was omitted (to facilitate verification of the error signal’s assumed second-
order-shaped spectral composition), hence the noise on Vs is not shaped or suppressed otherwise and will be subject to

aliasing. If thisintegrating capacitor is included, the noise requirement to V¢ will be less stringent.
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found. A thorough discussion of this aspect would, however, require a separate volume of this thesis.

The fabrication of the test chip is expected to be completed around January 22, 1999. Test results may
be available by the time this work will be defended. Figure 7.21 shows the layout of the test chip.

Figure 7.21: Layout of test chip (second-order SE-MS SC DAC).

Improving the Noise Performance. Asdiscussed above, the SC implementation shown in Figure 7.17
is sensitive to the large capacitive load (posed by the compensation DAC) of the opamp’s virtual ground
node. The opamp can be designed such that its settling timeis as good/fast asif the capacitive load had
been removed, but the degradation of the noise performance is unavoidable. If the noise performance is
required to be as good as 100 dB, the capacitors become impractically large (the active area of the test
chip was about 5 mm?), and the power consumption will increase accordingly. It should be understood
that 100 dB performance from any 10-times oversampled sub-5-Volt switched-capacitor circuit will
aways require use of large signal capacitors (cf. Section 4.5.1), but since the capacitive load of the
opamp increases the circuit’s sensitivity to the opamp’s nois&® by about 6 dB, it should be minimized if

possible.

BFor a two-stage opamp, the input-referred thermal noise is approximately ‘;’“TT where C; is the internal frequency-

response-compensating (Miller) capacitor. Although C; can be implemented as a MOSCAP, it will still require a quite large
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Because the compensation DAC’s relative capacitance?® is inversely proportional to the master DAC's
resolution, increasing the master signal’s resolution is a simple way to improve the system’s noise per-
formance. If the master signal is multi-bit, the master DAC will generally be nonlinear, and a UE-MS
encoder (or other means) will be required to suppress the local nonlinearity error in the signal band. If
the master DAC is implemented as a first-order UE-M S DAC (in the absence of efficient second-order
UE-MS encoders), the system will be only first-order mismatch-shaping and the OSR, therefore, higher
(30isatypica value). The higher OSR will be acceptable (and sometimes even preferable) for many ap-
plications because the capacitors can be made comparably smaller, and the compensation DAC'srelative
capacitance can be made negligibl€”. The power consumption need not be higher. Other applications,
however, are designed to have a high bandwidth, and they rely on alow OSR. Alternatives are required
for such applications’®.

It is highly preferable if the master DAC can be designed as a linear multi-bit DAC. Several U.S.
patents [61,62] describe the implementation of low-resolution high-linearity DACs, some of which may
actually work, but their operation is characterized by averaging a sequence of D/A conversions, whichis
equivalent to increasing the OSR by afactor of the length of the sequence, and they are, therefore, not of
particular interest. However, without using calibration or averaging techniques, it is possible to design
linear 3-level DACs, which can be used to bring the compensation DAC’s relative capacitance down by a
factor of two, and that is enough to improve the performance considerably. The design of 3-level DACs

will be discussed in the next section.

areato fulfill C; > 10C ~ 100 pF (to compensate for the 6 dB degeneration). A large C; capacitance (30 pF was used) will
also affect the opamp’s slew-rate performance and its power consumption. To minimize the power consumption, the test chip

was designed such that the period in which the opamp is slewing may as long as half the settling period.
%] e., the compensation DAC'’s capacitance (in Figure 7.17, it is approximately 10/4 C) relative to the master DAC's capac-

itance (in Figure 7.17, it is C).
Z'Notice that the simplest method is to use the generalized filtering principle, and that it may not be necessary to use UE-MS
encoders for the compensation DAC (or perhaps only for the primary compensation DAC). In the simplest case, the DAC can

be implemented as shown in Figure 7.16, where by (k) ismultibitand 1/H, (f) =1 — 2~ %
%The problem is easy to solveif the master DAC can be calibrated (which is a perfectly good solution), but in the following,

that will not be considered as an option.
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755 Linear Three-Level DACs

Linear three-level DACs represent a variety of options to improve the discussed DAC designs. For
example, the minimalist filtering DAC (cf. Figure 7.10) can be implemented without UE-M S encoders?®,

and so can the improved version shown in Figure 7.12 if the master signal is atwo- or three-level signal.
As discussed above, 3-level DACs can also be used to improve the noise performance of the SC circuit
shown in Figure 7.17, and it will be discussed in the next section that they are very useful for current-

mode second-order mismatch-shaping DACs. Hence, linear 3-level DACs are important circuits.

Feasibility of 3-Level DACs. The basic operation/idea in 3-level DACs is very simple. In a fully-
differentia circuit, an analog signa is dumped to either the positive path (conversion of “+1"), the

negative path (conversion of “—1"), or not at al (conversion of “07).

An example of this principle is shown in Figure 7.22, which is from a paper presented by Ka'Y. Leung

at ISSCC in 1997 [63]. The performance relies slightly on the matching of G, and Cref,,n and/or the
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Figure 7.22: Almost-linear 3-level DAC presented at |SSCC 1997.

matching of Cin p, and Cing,m, because it can be shown that the DAC’s output level $© are proportional

2 academically, this is quite an interesting system, because it would implement a scaled-element mismatch-shaping DAC,
where each nominal output value could be generated in only two ways (one for each value of & (k)). Thisisindeed aminimalist
mismatch-shaping DAC.

The DAC's output is here the variation of the opamp’s output voltage, i.e., the signal isbeing integrated (which is generally
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to—1, 0, and +1 with arelative inaccuracy of

6rel _ (gref,p - Cref,m) (Cint,p - int,m> (714)
ref,p + Cref,m Cint,p + Cint,m

However, assuming that the technology’s matching index is in the order of 0.1%, this error will not be
dominating unless the performance is 120 dB or better. The reported performance was “only” about
100 dB, but by means of calibration, the DAC was linearized to the 118 dB level. In this case, the error
sources are easy to identify: clock feedthrough and charge injection (charge errors) are well-known (and
quite large) “signals’, which will cause a signal-dependent error if the switches do not match perfectly
(and they never do). Another (larger) error results because the opamp’s offset only affects the output (by

Vofset giji) in the samples that are either “+1" or “—1" (effectively, this moves the “0” away from the

DAC's linear characteristic, and by adjusting the opamp’s offset, the DAC’s linearity can be adjusted).

Thermal-noise considerations were probably the reason why the circuit was designed this way.

Linear Three-Level DAC. Three-level DACs should preferably not rely on matching or cancellation
of any kind (in Figure 7.22, the assumed matching of the switches can cause nonlinearity), and certainly
not on the offset of opamps. Allowing the circuit to rely only on the second-order matching expressed

by Equation 7.14, alinear 3-level DAC can be implemented as shown in Figure 723,

It is important that the Haigh-and-Singh delayed-clock-phases clocking scheme is used, i.e., that the
switches controlled by ®; and ®, are opened sightly before the switches controlled by &4 and &4 [29].
An dternative clocking scheme, which is equally good, is discussed in [64]. This clocking scheme may
provide a better understanding of the operation’s idedlity.

Either clocking scheme will assure that it is only the switches controlled by & and &, that will cause
charge errors. Because these switches are controlled independent of the digital signal, these charge errors

will not cause nonlinearity®?. As discussed in [64], the DAC’s output signal is determined exclusively

the case for AX quantizer front ends).
31This implementation was proposed by Professor Un-Ku Moon (Oregon State University) during a private discussion. He

claimsthat it isused frequently in pipeline ADCs (which are one of his specialties).
*2The charge errors depend slightly on the surrounding impedance levels. Thiscan potentially cause signal-dependent errors

(nonlinearity), but it can be brought to avery low level.
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Figure 7.23: Linear 3-level DAC often used in pipeline ADCs.

by voltage variation® on the input side of the C,¢ capacitors. Clearly, the differential voltage variation
will be perfectly proportional to the digital signal, hence only common-mode variations of the input may
cause errors. Nominally, +V,.s and —V,. are of opposite polarity (with respect to V), but in reality,
there will always be a small mismatch. Common-mode signals, however, can only “leak” to the output
due to the opamp’s finite common-mode-rejection-ratio (CMRR) (which can be made very good) and/or
due to capacitor mismatch, in which case the suppression factor is ¢, as expressed by Equation (7.14).

In conclusion, this 3-level DAC can be designed to be linear well beyond the 100 dB level.

Fully-Linear 3-Level DAC. Figure 7.24 shows a3-level DAC whichis*fully-linear” in the sense that
the linearity does not in any way rely on capacitor matching, common-mode rejection, or on symmetric
voltage signals. To emphasize this point, the circuit isshown in asingle-ended version, although it should
normally be implemented as afully-differentia circuit. The DAC delays the signal by one full samplé*,

which may be a disadvantage when it is used as the feedback stage of a AX. quantizer. Otherwise, the
operation is quite similar to that of the DAC shown in Figure 7.23. It is made insensitive to charge
errors by employing one of the clocking schemes described in [64], and the DAC's linearity relies only

on the fact that the converted signal is proportiona to the voltage variation on the input side of G,

%3From when &, is opened until ®, is opened.
%The input signal must be availablein clock phase ®; and held constant (from that point on) for one full clock cycle.
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which in this implementation, is perfectly symmetric (assuming only that the reference potential ¢ is

time-invariant).
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Figure 7.24: Fully-linear — but delaying — 3-level DAC, which also can be implemented differentially.

Protecting the Reference Voltage. To avoid a signal component on the reference voltage, it is often
important that the load on the voltage reference is signal-independent (because the reference’s output
impedance will be nonzero). The 3-level DAC shown in Figure 7.22 already has this feature, but the
DACs shown in Figures 7.23 and 7.24 do not. Hence, when using these DACs, a dummy load should
be implemented to make the load on the voltage reference signal independent (in Figure 7.23, this can
be implemented by connecting a discharged dummy capacitor Ce¢/2 between £V¢ when the digital

signal attains the value “0”).

Linear 3-Level Current-Mode DAC. The next Section will make good use of 3-level current-mode

DACs, hence an implementation example isrequired (cf. Figure 7.25).

To avoid dynamic errors, the proposed DAC is based on afully-differential implementation of the time-
interleaved switching concept discussed in Section 5.2, whereby the linearity will depend only on static
errors. Similar to the discussed fully-differential SC DACs, it can be shown that the static linearity will
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Figure 7.25: Linear 3-level current-mode DAC.
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be limited by

R, — Rm Ir f.p — Ir f,m
Srog = [ =2 efp " “ref, > 7.15
o (Rp + Rm> <Iref,p + Iref,m ( )

If the resistors cannot be assured to match well, then the current sources must match accordingly better,
and vice versa. In general, to obtain 100 dB performance, d..; must be lessthan —100 dB, which usually

isfeasible.

Notice that the switching block’s impedance seen from the opamp is signal-dependent. This may cause
nonlinearity, because the opamp’s offset will affect the output as a linear function of this impedance.
The simplest way to aleviate the problem is to make the impedance level high, e.g., by cascode cou-
pling the reference current sources (the switches can be used for this purpose). As the ratio of the
opamp’s offset relative to full-scale output usually will be —40 dB or less, the reference current sources
output impedance relative to the opamp’s feedback resistors need only be about 60 dB to obtain 100 dB

performance (usualy feasible).

7.5.6 Current-Mode | mplementation

Continuous-time current-mode DACs can typically be designed to have a better noise performance,
higher speed, and lower power consumption than their switched-capacitor counterparts. Hence, first-
order mismatch-shaping will generally be sufficient to obtain the required performance, but there may

be some applications where second-order mismatch shaping is preferable or needed.

Second-order mismatch-shaping DACs are best and simplest implemented using the generalized filtering
principle, e.g., as shown in Figure 7.15. However, the current-mode analog filters are not as simple to
implement as switched-capacitor circuits are (cf. Figure 7.17). The analog filters should, by definition,
match a discrete-time filter function, e.g., 1/H,(f) =1 — 2!, z = e/>7///s but part of the advantage
of current-mode DACsislost if switched-current filters are used. One option to avoid this scenario isto
design aCT filter

_ Sy bt

Horlf) = Y8 ast

(7.16)
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suchthat Hor(f) ~ 1/Hy(f) inthe signal band; but it istypically difficult to obtain areasonably good
matching of thefilters, and even in the best case, the filterswill not match in the entire frequency range®.

Another and typically much better option is to use pseudo-digital filters.

Pseudo-Digital Filters—Typel. Considering again the SC implementation shown in Figure 7.17, it
can be observed that each of the single-bit digital signals generated by the UE-MS encoders are D/A
converted and filtered individually by the non-reset capacitors. Hence, each capacitor can be construed
as alinear 3-level DAC converting the first-order difference of the respective single-bit digital signals.
The shown implementation is particularly suitable for SC circuits, but the underlying principle can aso
be used for CT current-mode implementations, where the 3-level DACs are implemented differently.
This is shown in Figure 7.26, where the overal D/A conversion is performed by an array of 3-level

DACs™®,

The spectral encoder (not shown) is assumed to be designed as avariation of the spectral encoder shown
in Figure 7.15, where the master signal & (k) is of 3-level resolution, and the primary compensation
signal by (k) is of only 2-bit resolution (because the magnitude of (k) is proportional to the master
signa’s step size, i.e, it is decreased by a factor of two). If the 3-level DACs are as linear as the
required performance, the composite DAC will perform second-order mismatch-shaping, and 100 dB

performance can be obtained at around 10 times oversampling.

Pseudo-Digital Filters—Typell. Figure 7.27 shows an aternative technique for the implementation
of pseudo-digital filters suitable for use in combination with the generalized filtering principle. For
simplicity, only the D/A conversion of one of the compensation signals is shown. Each of the two
single-hit signals from the UE-M S encoder is fed to adigital delay line, where each tap controls alinear

single-bit DAC. The filtering (second-order differentiation is shown) of these signals is perfectly linear.

A filter will be needed to smoothen the DAC's output signal
%The system is assumed to beimplemented asafully-differential circuit, where the 3-level DACs are implemented as shown

in Figure 7.25. Notice that only onetime-interleaving switching block (cf. Figure 5.2) should be implemented for the composite
DAC.
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Figure 7.26: Continuous-time current-mode second-order mismatch-shaping DAC.
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Figure 7.27. Second-order differentiating compensation DAC.

Although each FIR filter individualy is perfectly linear, this does not imply that the overall operation will
beideal. If the FIR filter coefficients do not match their nominal value, the filter's transfer function will
not be ideal, and the compensation of the master AX modulator’s truncation error e(k) (cf. Figure 7.2)
will not be ideal. Although mismatch of the filter’s transfer function can be tolerated to some extent (cf.
Section 7.5.2), this effect somewhat limits the maximum length of the FIR filter. First-order filters are
generaly sufficient, but in this case the 3-level-DAC technique proposed above (Figure 7.26) islikely to

provide the best performance.

The analog-FIR filter technique is useful mainly if second-order filtering is required. In that case, the
numeric stability of the transfer function's zeroes should be considered carefully. For example, the
two nominal zeroes at z = 1 for the circuit shown in Figure 7.27 are extremely sensitive to coefficient
inaccuracy (because it is a double zero), and the circuit should never be implemented as shown. The
filter matching can be improved either by designing the master AX modulator’s first filter stage as a
resonator (resonating at a high signal-band frequency), or by designing the second-order differentiation

as shown in Figure 7.28
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Figure 7.28: Improved second-order differentiating compensation DAC.

7.5.7 Mismatch-Shaping Bandpass DACs

Bandpass unit-element mismatch-shaping encoders are feasibl€” and it should be understood that all the
discussed techniques can be implemented as bandpass systems. Bandpass DACs are particularly simple

to implement when the center frequency is f;/4.

Notice, in particular, that the current-mode DAC shown in Figure 7.26 can be implemented as a bandpass

system because asingle-bit signal, which isfiltered by 1 + 22, will result in a 3-level signal.

%"For example, for tree-structure encoders, choose H(f) = ﬁ Although the filter is of second order, the complexity,

stability and performance is equivalent to that of afirst-order encoder.



Chapter 8

High-Resolution Delta-Sigma Quantizers

A general characteristic for state-of-the-art quantizers — and particularly for signal quantizers — is that
their performance is limited mainly by the linearity of an internal DAC (cf. Section 3.4 and Chapter 4).
However, with the development (and use) of scaled-element mismatch-shaping DACs (cf. Chapter 7),

other factors will typically turn out to be limiting in the design of asignal quantizer.

Consider, for example, Figure 8.1, which shows the topology in which most multi-bit AY. quantizer's

have been implemented thus fart. The loop quantizer may cause only little delay, hence it is practically

Loop Quantizer

g(k) | . —e(k) N-bit@1 d(k)
H(f) 1/[?DAC -
Feedback DAC
f(k) N-bit@1
e —
Kpac

Figure 8.1: Traditional multi-bit delta-sigma quantizer.

always designed as aflash quantizer (cf. Section 3.4.1). Typically, to avoid complex circuitry and ahigh

*In the best case; quite often the feed-forward branch (from g (k) to the loop quantizer) is omitted and/or d(k) isinjected at

internal nodes of H( f). These are undesirable variations that may cause substantial problems [43].

211
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power consumption, the loop quantizer’s resolution, and hence the resolution of d(k), will be restricted
to less than (say) 5 bits. In other words, it is now the loop quantizer, and not the feedback DAC, which
is the limiting element?. This Chapter will consider some options for how the resolution of d(k) can be

increased without using high-speed high-resolution quantizers.

8.1 Choosingthe Optimal Resolution

Consider Figure 8.1. An optimally designed signal quantizer will represent the analog input signal g(k)
by ahigh-resolution digital approximation d(k). Itis, however, useless to increase the resolution of d(k)
beyond a certain limit. Thislimit is attained when the feedback DAC’s error signal m (k) dominates the

truncation error (k)3

e(k) = g(k) — f(k) = [g(kT)n; Caftiforr)égrgir(k)] - [D;ré(éfrzor] (8.1)
at which point the signal-to-noise ratio of e(k) is 0 dB, and there is only little information left for the
loop filter to detect. In other words, for atypical technology for which the relative matching index is
(say) 0.1%, the highest meaningful resolution of d(k) isin the order of 10 bits, in which case the analog
loop filter H(f) needs to be of only the same order as the mismatch-shaping DAC. Sometimes H ( f)
may be designed one order higher to make the truncation error fully negligible.

The objective of this chapter is to design signal quantizers that provide an output signal d(k) with a
resolution of approximately 10 bits, without requiring use of high-speed high-resolution quantizers (to

minimize the quantizer’s complexity and power consumption).

2When the signal is represented with only 5-bit resolution, a sixth- or higher-order loop filter H(f) is required to obtain
100 dB performance at a OSR of 10 (cf. Section 3.4.3). If the signal is represented by (say) 10-bit resolution, a second-order

loop filter is sufficient.
3| deally, only the truncation error will be detected by H (f).
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8.1.1 Fundamental Principlefor High-Resolution Quantization

High-resolution low-complexity quantizers generally function by adding the results from several low-
resolution quantizations of signals of very different effective magnituded. This fundamental principle

can aso be used for the multi-bit AX quantizer shown in Figure 8.1.

In Section 4.3.1, it was derived that the magnitude of v(k) will be only a small factor of (say) 1 to 10
times larger than the loop quantizer’s step size. Hence, for high-resolution AY. quantizers, the full-scale
range of g(k) will be significantly larger than that of v(k), whereby d(k) can possibly be generated as
the sum of a low-resolution quantization of g(k) (the MSBs of d(k)) and a low-resolution quantization
of v(k) (the LSBs of d(k)). This arrangement is shown in Figure 8.2. It can be construed as a digital-

domain implementation of the feed-forward path.

8.2 Two-Stage Delta-Sigma Quantizers

Figure 8.3 shows an dternative and very interesting interpretation of the circuit shown in Figure 8.2 (it
is the same circuit, but drawn differently), which will be called atwo-stage AY. quantizer. This Figure
clearly showsthat the quantizer, in redlity, is atwo-stage residue-calcul ating quantizer (cf. Section 3.4.2),
where the first stage is a traditional residue stage (cf. Figure 3.17), and where the second stageisa AX
guantizer of the type shown in Figure 3.24. A peculiarity of this circuit is, however, that the two stages
share the same feedback DAC, which is essential in order to avoid unshaped DAC errors.

The AY. quantizer’sinput signal isthefirst stage’sresidue signal n (k) = g(k)—dy (k) Kpac. Preferably,
this residue signal should be added to v (k)® (cf. Figure 8.4), but thiswould require that the |oop quantizer
be clocked after the first-stage quantizer (timing issues are discussed |ater).

“For example, pipeline quantizers (cf. Figure 3.20).
5In order to implement the A quantizer in the preferred topology (cf. Section 3.4.3 and Figure 3.25).
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Coarse Quantizer

/" 5-bit@16 do(k)
\. 1/Kpac

Loop Quantizer

gk) | o k) v(k) bi di(k) , AT d(k)
H(f) f/%t]iz : + s
Feedback DAC
f(k) 9-hit@1
Kpac

Figure 8.2: AY. quantizer with a digital-domain feed-forward path.

Loop Quantizer

5-bit@1
1/Kpac

Figure 8.3: The same AX. quantizer as shown in Figure 8.2, but here drawn to emphasize its residue-

calculating topology.
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Loop Quantizer

5-bit@1

Figure 8.4: Two-stage A quantizer with implemented feed-forward path.

Loop Quantizer

5-bit@1
1/ Kpac

v(k)

Figure 8.5: Two-stage AX. quantizer with fully-dithered first stage.
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8.2.1 Preventing Nonlinearity

A perhaps not-so-obvious difference between the two-stage AY. quantizers shown in Figures 8.3 and 8.4
isthat the one without the feed-forward path is nonlinear, even if the feedback DAC and the two quantiz-
ersareideal. The problem arises because the first stage (the residue stage) has anonlinear static transfer
characteristic® with unity gain, whereas the second stage (the AX. quantizer) has adynamic (frequency-
dependent) signal transfer function, which is unity only if the feed-forward path is implemented (cf.
Figure 8.4)".

The nonlinearity can be avoided in two ways, either the two stages must be designed to have the same

signal transfer function, or the first stage must be made linear.

Matching the Transfer Functions. The signal transfer functions can be matched either by designing
the AY. quantizer with the feed-forward pattf, or by matching the first stage to the second by computing
d(k) asthe sum of d; (k) and dy(k) filtered by % The latter technique, however, is of only limited
interest because it involves matching of analog/digital filters, and because the complexity of the digital

filter is considerable.

Linearizing the Residue Stage. Linearization of the residue stage is a matter of decorrelating the
residue signal from the input signal, which can be obtained by dithering the first-stage quantizer as
shown in Figure 8.5. The dither signal j(k) should preferably be white noise with a uniform probability-
density function (pdf) spanning one LSB of the first-stage quantizer. By identifying that this two-stage
AY. quantizer is equivalent to the traditional multi-bit AX quantizer shown in Figure 8.1 (with a 9-bit
loop quantizer) where j(k) is added directly to v(k), linearity can be concluded. Notice, however, that
the dither signal j(k) is much larger than what would normally be used in a 9-bit AY quantizer, hence

the performance will not be comparable.

5Truncation to 5-bit resolution.

"The signal transfer function is 52, which can differ substantially from unity when the OSR iss low.

®In which case, the A quantizer's signal transfer function is 13-4 = 1. See Section 3.4.3 and Equation (353).



82 TWO-STAGE DELTA-SIGMA QUANTIZERS 217

8.2.2 Simulation Results

The simulation results presented below are generated using an ideal feedback DAC. The actual (total)
error signal will be the sum of the shown truncation error signal and the feedback DAC’s error signal (cf.
Figure 3.22 and Chapter 7). The dashed line in the Figures shows an estimate of the feedback DAC's
error signal, assuming that it is second-order shaped and that the technology’s matching index is 0.1%
(cf. Figure 7.18).

Reference Performance. Figure 8.6 shows the performance of a traditional multi-bit AY quantizer
with a 9-bit loop quantizer (cf. Figure 8.1). The loop filter is of third order and the NTR,,x value is
three”. It can be observed that the truncation error signal dominates the feedback DAC’s error signal
in large parts of the frequency spectrum, but also that the DAC's error signal limits the performance
at the target OSR (as it should for an optimally designed quantizer). The performance of this system
will represent the reference to which the performance of the proposed systems will be compared (the

performance cannot be improved unless a better DAC is available).

Per for mance of the Two-Stage Delta-Sigma Quantizer Shown in Figure 8.4. Figure 8.7 shows the
simulated performance of the two-stage AY. quantizer shown in Figure 8.4. The performance of this
guantizer isvirtually indistinguishable from the reference performance. This result is very encouraging,
because two-stage A quantizers are significantly simpler to implement than traditional single-stage

single-loop multi-bit AY> quantizers (cf. Section 8.3).

Per for mance of the Two-Stage Delta-Sigma Quantizers Shown in Figures 8.3 and 8.5. Figure 8.8
shows the performance of the two-stage A3 quantizer shown in Figure 8.3. Clearly, this quantizer is

quite nonlinear (partly dueto the high signal frequency), and henceit isnot suitable for high-performance

%At 10 times oversampling, the signal-band power of the truncation error can be reduced by about 10 dB by increasing the
loop filter's NTF,ax value, but in this case there is little point in doing that, because the DAC's error signal dominates the
signal-band performance and the out-of-band performance would be degraded. 100 dB performance cannot be obtained at 10

times oversampling when using a second-order loop (the resolution of d(k) istoo low).
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Figure 8.6: Traditional 9-bit AY quantizer (cf. Figure 8.1).
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Figure 8.7: Two-stage A quantizer with 5-bit quantizers and feed-forward signal path (cf. Figure 8.4).
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applications. The system can be linearized by dithering the first-stage quantizer, as shown in Figure 8.5,
in which case the performance will be as shown in Figure 8.9. Although this quantizer is linear, it is
observed that the performance does not measure up to the reference. The same performance can be
obtained using a traditional AY quantizer with a 5-bit loop quantizer, which often will be easier to

implement™©.

Conclusion. The two-stage AY. quantizer structure is very useful and efficient, but only if the feed-
forward signal path is implemented (as shown in Figure 8.4). In that case, the quantizer's linearity
does not depend on the linearity of the first-stage quantization d)(k), which may be generated by actual
quantization of g(k), by prediction on the basis of recent values of d(k), or in almost any other way.
For each bit of correlation between g (%) and d (%), the Nyquist-band power of the truncation error signal
will decrease by 6 dB. Hence, in the ideal case, the first-stage quantizer would be a high-resolution
quantizer (say, a pipeline quantizer), such that the loop quantizer need have only afew bits of resolution.

However, thisis only implementable if the required timing can be obtained (discussed in Section 8.3).

8.3 Implementation of Two-Stage Delta-Sigma Quantizers

As discussed in Section 3.4.3, the fundamental property of signal quantizers is that they attempt to
minimize the error signa e(k). In essence, the first stage of the two-stage AY. quantizer (cf. Figure 8.3)
provides an estimate d, (k) of g(k), and the second stage generates d; (k) to correct for the inaccuracy of
the signal d(k) generated thus far (which is expressed by v(k)). If dy(k) isagood (say 10-bit accurate)
estimate of g(k), then e(k), v(k), and hence d; (k) will be small, and the loop quantizer can have asmall

step size with only (say) 2 bits of resolution. On the other hand, if ¢)(k) is aless accurate (say, 5-bit)

However, not always. Pipeline techniques will be proposed later, and then the first-stage (say pipeline) quantizer can be
designed to have a high resolution. For stability reasons (of the AX loop), the loop quantizer may have only little delay, hence

it generally cannot be designed as a pipeline quantizer.
A simple technique is to use linear prediction and define e.g. do(k) = 2d(k — 1) — d(k — 2). Because the absolute

accuracy of linear prediction is best for small input signals, this technique will result in a system with a good dynamic range

performance. Consider also the predictive structure discussed in Section 9.3.1.
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Figure 8.8: Two-stage A quantizer without the feed-forward signal path (cf. Figure 8.3).
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Figure 8.9: Dithered two-stage A quantizer without the feed-forward signal path (cf. Figure 8.5).
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estimate of g(k), then it is necessary to implement the AX quantizer's feed-forward path to the loop
quantizer (cf. Figure 8.4), because otherwise, the estimation error g(k) — dy (k) Kpac Will be transferred
directly to e(k), in which case v(k) will attain large values as an unmistakable sign of the lessthan ideal

operation.

Timing Problems.  When thinking of the system in these terms, another problem becomes apparent.
Several operations must be performed sequentially and within one clock cyclé? to assure that ¢(k) and
f(k) are as correlated as possible in order to avoid e(k) and v(k) attaining large values. Clearly, this
poses a serious problem for high-speed systems because each operation takes time, thereby possibly lim-
iting the maximum sampling frequency. The problem becomes even worse if the feed-forward path need
be implemented, or if the first-stage quantizer is a multi-stage quantizet® (continuous-time quantizers

are an al-together separate issue).

8.3.1 Introducing Pipeline Techniquesto Allow Circuit Delays

Asaways, it is better to improve the system’s topology rather than blindly designing faster circuitry (to

which there always will be alimit, and which will be associated with an increased power consumption).

Firgt, it isimportant to observe that it usualy istolerable if the two-stage AX. quantizer is delaying, i.e.,
if d(k) represents, e.g., g(k — 2) and not necessarily g(k). Second, it should be observed that the main

objective isto avoid large values of e(k), which requires a high-resolution (10-bit) datd* quantization of

2The first-stage quantization of g(k), the addition of do(k) and d; (k), the D/A conversion of d(k), and the subtraction of
g(k) and f(k).

Bwhich, in reality, is two sides of the same problem. If the first-stage quantizer is a (say) two-step flash quantizer, the
resolution of do (k) may be high enough to alow the feed-forward branch to be omitted. On the other hand, if the first-stage
quantizer isasingle-stage flash quantizer, the resolution of do (k) will below and the feed-forward path required, in which case
the combined first-stage/loop quantizer operates as a two-stage flash quantizer.

Subranging quantizers may represent a good choice for the implementation of the first-state quantizer. Another technique,
which hasalot of potential, isto predict do (k) on the basis of previous d(k) values. The calculations can typically be performed
in advance, whereby the feed-forward path is quite simple to implement. This approach is particularly interesting when the

input “g(k)” isacontinuous-time signal (will be discussed).
1The difference between data quantizers and signal quantizersis discussed in Section 3.4.
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g(k), which will be associated with substantial delay if the circuit complexity and power consumption is
to be reasonable. By combining these two observations, it is found that the two-stage A quantizer can
be implemented in the topology shown in Figure 8.10, where an analog N-sample delay line has been
inserted to (time wise) line up the correlated samples of g(k) and f (k). In the Figure, it is assumed that
the loop quantizer and the feedback DAC in combination cause one full sample of delay®, hence the

feed-forward path should delay only N — 1 samples. This pipeline technique can be used extensively to
solve most delay problems, but (obvioudly) it has interest only if high-performance analog delay lines

can be implemented.

Loop Quantizer

5-bit@1

Figure 8.10: Pipelined two-stage AX. quantizer.

8.3.2 Design of Analog Delay Lines

Simple analog delay lines can easily be implemented as switched-capacitor circuits. However, if 100

dB performance is required at 10 times oversampling, noise and several other issues come into play, and

5Thisis generally the maximum allowed in order to preserve the AX. loop's stability.
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then the circuit is not that simple to design.

The following discussion will consider the design of a high-performance switched-capacitor delay line,
which provides one full clock cycle of delay (and it can easily be extended). A one-sample delay is
usually sufficient because d(k) is required to be of only about 10-bit resolution. Half the delay can, for
example, be used for a two-step flash quantization, and the other half can be used for the mismatch-
shaping feedback DAC’s computations. A longer delay line will, however, be required if, for example,

the first-stage quantizer is designed as a pipeline quantizer.

Proposed I mplementation: a Delay-Line Integrator. Figure 8.11 shows the proposed implementa-
tion, which is adelaying integrator, i.e., acombination of the one-sample delay line and the loop filter's

first integrator stage.

The input voltage signal g(k) is sampled at the termination of clock phase . Capacitor C represents
the main (integrating) signal path. It dumps the signal charge ¢,(k) = —g(k)C: to the integrating
capacitor C},; coupled across the main (high-performance) opamp OP1. The other (typically much
simpler) opamp, OP2, implements a sample-and-hold (S/H) operation. Theinput signa ¢(k) is sampled
on (5 in clock phases ®,, and the capacitor is “flipped around” and used as the opamp’s feedback
element in clock phases ®;. Capacitor Cy is used only to hold the output voltage while C5 samples the
next sample g(k + 1) (uncritical operation, which may be incorporated to prevent undesired effects from
stray capacitors). The S/H stage drives (5 (of the same nominal value as ) which in combination with

OP1 and Ciy,; implements an inverting amplifier from g(k) to Vi (k).

Thefundamental ideaisthat ¢.(k) = (g(k)—g(k—1))C> will cancel thesignal charge g,(k) = —g(k)Cy
from C1, hence g(k) will not affect Vi (k) in the clock phase ¢, immediately following the sampling

instance. However, in the following clock phase @, the charge provided by C; will be withdrawn

ge(k+1) = (9(k+1)—g(k))C2

= g(k+1)Cy —|g(k)Cy (82)

and the net result is that the signal —g(k)C) is dumped to the feedback capacitor Ci,,; one clock cycle
later than it otherwise would have been dumped (if OP2 is omitted). This delay provides the extratime
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Figure 8.11: Combined delay line and integrator.
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required for the generation of a high-resolution mismatch-shaped feedback signal ¢ (k) ~ ¢4(k).

A key feature of thisimplementation isthat it is quite robust with respect to circuit imperfections. Mis-
match of C; and Cs will, e.g., cause only linear errors, and it is, therefore, of only little concern. Fur-
thermore, because C; is not discharged at any time, al errors from OP2 (including noise, nonlinearity,
etc.) will befirst-order differentiated; hence, C; and OP1 will be the dominating error sources (which is

the best-case scenario'®).

Figure 8.12 shows that the principle easily can be generalized and used for the implementation of delay

lines of arbitrary length.

271 271 271 271 > 000

Cy=0C4
Dog 3! qe (k) Cint
o |

g(k)

Figure 8.12: Generalized delay-line integrator with first-order shaped error signal.

8.3.3 Avoiding Sequential Settling

Figure 8.13 shows a more detailed (system-level) perspective of the pipelined two-stage A quantizer
shown in Figure 8.10 (for N = 1). Theloop filter H(f) has been sectioned in three parts to emphasize
the prospective use of the delaying integrator shown in Figure 8.11, and to show that the feed-forward

%8For further noise improvements, C; can be combined with the mismatch-shaping DAC's master DAC.
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path can be implemented without introducing new active elements (differentiation is a passive operation

in SC circuits).

The Problem. It is well understood that to preserve stability, the AX. loop must have a path in its
topology that has exactly one sample of delay [1]. For the shown system topology, this implies that
F(z) will be nondelaying because the A loop already includes one full sample of delay. For example,
to implement the classical second-order loop filter H(z) = % the system should be designed
with F(z) = 2 — 2!, where “2” is the nondelaying part. This is not optimal, because nondelaying
SC circuits are subject to sequential settling, which will reduce the maximum sampling frequency [29].
To avoid this scenario, the topology can be modified to incorporate a local feedback path, as shown in

Figure 8.14.

TheProposed Solution. Thegain A- Kpac of thelocal feedback DAC can always be chosen such that
the loop filter can be allowed to include one extra sample of delay, here emphasized by defining that the
middle part of the loop filter has the transfer function z~1.J(z). For example, to implement the classical
second-order AY. modulator, A must be 2 and J(z) = 1. It should be observed that, by introducing
the local feedback path, the AY. quantizer’s input signal g(k) — Ky Kpac isinjected into the loop filter.
Thiseffect is highly undesirable, and it should be compensated for by adjusting the feed-forward path as
shown [43]. Notice that, for A = 2, the feed-forward path’s transfer function becomes 1 + 7!, which
in fully-differential SC circuits can be implemented, e.g., by “switching” the two input capacitorsin the

same way as for double-sampling SC circuits.

8.3.4 Proposed Circuit-Level Implementation

Figure 8.15 shows a detailed schematic for a switched-capacitor implementation of the pipelined two-
stage AY quantizer shown in Figure 8.14. For simplicity!’, the A loop is of only second order, and

it is designed to have the classica noise transfer function NTF(z) = (1 — z~')2, which (as discussed

7 As discussed above, the loop filter should preferably be of third order if the resolution of d(k) isonly 9 bits.
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Figure 8.13: System-level implementation of the two-stage AY: quantizer shown in Figure 8.10.



228 CHAPTER 8. HIGH-RESOLUTION DELTA-SIGMA QUANTIZERS

= 1—z 14 Azt

First-Stage Quantizer

g(k) 5-bit@16 5-bit@16N | R
N\ Kbac | O e e

Feed-Fdrward Path

5—1/2

do (k) Part of Loop Filter
Loop Quantizer

+++ d(k) | s-bit@1 2172 R4
1/KDAC l—z_l - +

Loca Feedback DAC

5-bit@1
A-Kpac

5—1/2

!

Part of Loop Filter

i 271 (2)

Figure 8.14: Variation of the two-stage AY. quantizer shown in Figure 8.14, which, when implemented
as a SC circuit, need not be subject to sequentia settling.
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Figure 8.15: SC implementation of the pipelined two-stage A quantizer shown in Figure 8.14.
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above) is obtained for J(z) = 1 and A = 2. Although the circuit is shown (pseudo) single-ended, it
should preferably be implemented as a fully-differential circuit.

The Schematic. The input stage is implemented as the delay-line integrator shown in Figure 8.11,
where also the used clock phases are shown. Thefirst-stage (5-bit flash) quantizer is clocked when clock
phase @, ends, and the result dy(k) isimmediately D/A converted and subtracted from the S/H input
signal provided by OP2; the signal isrepresented as acharge pulse ¢- (k) conducted by the feed-forward
path leading to OP3's feedback capacitor. The feed-forward path is implemented pseudo differentialy,
and it makes use of the switching technigue commonly employed for differential double-sampling SC
circuits (the dashed lines indicate that the two connections are interchanged for every increment of k).

Hence, the feed-forward path will provide charge pulses of

grr (k) = 16 ([g(k) +g(k — 1)] = Kpac[do(k) + do(k +1)]) (8.3)

OP3 implements the loop filter's second and last stage, and it al so implements the summation of the feed-
forward signal grr(k), the local feedback signal ¢rrp (%), and the signal from the loop filter’s previous
stage, OP1. These signals are represented as charge pulses dumped to the opamp’s virtual-ground node,
and they will cause a change in its output voltage V5 (k). Va(k) represents mainly the residue from the
first-stage quantization, and it should be quantized as early as possible, i.e., as soon as ¥ (k) has settled
to 5-bit accuracy. Notice that to obtain 100 dB performance, OP3 must be allowed to settle to at least 10
— 12 bits accuracy; the loop quantizer, however, can be clocked earlier, because settling and truncation
errors will be compensated for in the following samples. In general, the loop quantizer can be clocked
approximately in the middle of clock phase ®; (see Figure 8.11), which will leave the feedback DAC
approximately the duration of clock phase & for computations necessary for the mismatch-shaping

operation.

Scaling Technique. The schematic (Figure 8.15) also shows a convenient scaling technique. Each of
the loop filter's two stages amplifies the signal by a factor of four (not shown in Figure 8.14), which

implies that the two flash quantizers operate with the same LSB value. Thisis convenient, because (this
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way) they can be implemented by only one 5-bit flash quantizer multiplexed between the two functions
(they are not clocked simultaneously). The scaling technique also assures appropriate full-scale signal
levels, and suppression of device noise. Generally, (i should be much smaller than Cy because its

thermal noise is suppressed by approximately 30 dB (when referred to the input, and for OSR = 10).
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Chapter 9

Residue-Compensated Delta-Sigma

Quantizers

In Section 8.1 it was found that if the truncation error »(k) = g(k) — d(k)Kpac isto be dominated by
the feedback DAC's error signa m(k), the input signal g(k) must be represented by asignal d(k) of at
least 10 bits of resolutiont. Whereas the complexity of the feedback DAC is practically independent of
the resolution of d(k) (cf. Chapter 7), it was found that it may be difficult to quantize g (%) to the required
high (10-bit) resolution within the given time frame. Pipeline techniques were proposed as an efficient
means to alleviate this problem, but there may be situations (e.g., when designing continuous-time AX

guantizers) where this approach is not the most suitable.

Basic Operation of Residue-Compensated Delta-Sigma Quantizers. Now referring to Figure 8.1,
it may be observed that it is not a necessity that the truncation error (k) be reduced to the same level
as that of the feedback DAC's error signal mi(k). If d(k) is a coarse representation of g(k) (i.e., if the

truncation error is substantial), it merely implies that there is significan® information left in e(k) =

*As discussed in Section 4.3.1, 100 dB performance can be obtained even if the resolution of d(k) is aslow as 3 to 4 bits;
but that involves the use of high-order (sixth to eighth order) loop filters, and there are severa other reasons why thisis not a

good design approach. When using a second-order loop filter, approximately 10 bits of resolution is required.
2| .e., the signal-to-noise ratio (truncation-error to DAC-error ratio) is better than 0 dB (cf. page 212).

233
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g(k) — f(k) = r(k) — m(k), and hence a better estimate d, (k) of g(k) can be obtained if e(k) is
quantized and the result d, (k) is added to d(k)

dy(k) = d(k) + de(F) (9.)

Signal quantizers that compensate for the main AX quantizer’s truncation error r(k) will be called

residue-compensated AX quantizers.

MASH quantizers (cf. Section 4.2), for example, are residue-compensated AY. quantizers, but the way
they estimate e(k) is extremely sensitive to circuit imperfections (cf. Section 4.2.1). This Section will

focus on more robust ways to estimate e(k).

9.1 Directly Residue-Compensated Delta-Sigma Quantizers

Consider again the MASH structure shown in Figure 4.5. Things go wrong from the very beginning
because the signal d,(k), i.e., the estimate of ¢(k) upon which the estimate of e(k) is based, depends
on how well the two DACs match®. Preferably, d. (k) should be the simplest possible function of e(k)
itself, and not some obscure reconstruction that depends on numerous parameters which are only poorly

controlled, e.g., matching of high-order analog and digital filters.

Figure 9.1 shows the simplest possible structure for residue-compensated A quantizers, which will be

called directly residue-compensated AY. quantizers.

9.1.1 Analysisand Performance Evaluation

The three data converters' gains are al defined with respect to the same nomina value kpac, but (as
aways) there will be mismatch errors, etc.. Assume that the quantization d. (k) of e(k) is associated

with an error signal y(k)

_ 1
Kpace

de (k) (e(k) +y(k)) (9.2)

3That thisis not the dominating problem only emphasizes the poor robustness of the MASH topology.
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Residue Quantizer

AP+1)-Bit@1
\_1/Kpacz

Loop Quantizer

Feedback DAC
f(k) N-Bit@2”

Kpaci

Figure 9.1: Directly residue-compensated AX. quantizer.

which includes truncation, etc.. The residue-compensated AY. quantizer’'s output d,(k) can then be

calculated as
dg(k) = d(k)+d.(k)
_ U =mE)] | [ek) +y (k)]
Kpaci Kpac2
_ lg(k) —e(k) —m(k)] | [e(k) +y(k)]
Kpaci Kpac2
lg(k)]  le(k)(1 — RRA%2) — m(k) RAC2 4 y(k)]
+ (9.3
Kpaci Kpac2
Optimal Design. In Equation (9.3), the first term IE( s the desired signal, and the second term

is the residue-compensated AY quantizer's error signal. The error signa cannot possibly be made
smaller than ( ) , which is the performance that characterizes an optimally designed system. Hence,
in the ideal case and when implemented in a technology having a matching index of 0.1%, the residue-
compensated AY. quantizer's error signal will have a Nyquist-band power of around —60 dBFS (full-
scale), and the signal-band power will be around —100 dBFS at 10-times oversampling (cf. Figure 7.18).

GainErrors. Thefactor (1 KBA@) depends on the technology’s matching index, and it will typically
bein the order of —60 dB. If the AY. quantizer isimplemented with the feed-forward path and an N -bit
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loop quantizer, the Nyquist-band power of e(k) will bein the order of
P, le(k)] = —6 dBFS - (N —2) (9.9

Hence, if the loop quantizer’'s resolution is just a few (say, 3 to 5) bits, and the loop filter is of at least
second order, the gain-error signal e(k)(1 — %) will not dominate at any frequency. In other words,
the performance will generaly be limited only by the feedback DAC's error signal m (k) and/or the

residue quantizer’s error signa y(k)*.

Nonlinearity Errors (Truncation). The Nyquist-band power of y(k) will generaly depend on the
magnitude of e(k). If, for example, e(k) is —18 dBFS (realistic when using a 5-bit loop quantizer),
the target performance can be obtained if the residue quantizer is 13 to 14 bits linear. This level of
performance can just barely be obtained from data quantizers (cf. Section 3.4.2), but it can easily be

obtained when using signal quantizers (shown in Figure 9.2).

Dual-L oop Directly Residue-Compensated Delta-Sigma Quantizer. When analyzing the structure
shown in Figure 9.2, one finds that (because e(k) is small relative to full scale) Hx(f) may be of lower
order than H(f), and aso that the second feedback DAC need only be first-order mismatch-shaping.
The feed-forward path (the dashed line) should preferably be implemented (in which case it may make
sense to quantize ey (k) and add the result to the output), but even if this is not possible, the system will
yield a good performance. Notice that even if the two separate AY quantizers do not have the same

signal transfer function, harmonic distortion (similar to that shown in Figure 8.8) will not occur.

9.2 Indirectly Residdue-Compensated Delta-Sigma Quantizers

Directly residue-compensated A quantizers will not be discussed nor analyzed in great detail because

they are impractical to implement. The problem is that e(k) itself usualy cannot be quantized, and

4The design of residue-compensated A Y quantizers is equivalent to the design of the mismatch-shaping DACs discussed

in Section 7.1.1. m(k) and y(k) arelocal nonlinearity errors, and e(k)(1 — £24<2) isagain error.
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Residue Quantizer
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Loop Quantizer 2
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b HZ(f) 1/I?DA0
Feedback DAC 2
f2(k) N,-Bit@2"?
Kpaca

Feedback DAC
f (k) N-Bit@2"

Kpaci

Figure 9.2: Dual-loop directly residue-compensated AY: quantizer.

generating d. (k) on the basis of a reconstruction of e(k) is usually troublesome (see Footnote 13 on

page 248).

Theloop filter's H( f) input stage is almost always an integrator, where e(k) isacharge or current signal
that is dumped into an integrating capacitor. Because charge and current signals exist in only one copy
(which is used for the integrating capacitor), the estimate d, (k) generally cannot be generated from e(k)

itself.

When e(k) is dumped into the integrating capacitor, the outcome is a voltage signal (say o(k)) which
is proportional to the integral (sum) of e(k). An advantage of voltage signals is that they can be used
simultaneously for several purposes, i.e., an arbitrary number of accurate copies are directly available.
Hence, the estimate d. (k) can be obtained by quantizing the first-order difference of o(k), or even better
by calculating the first-order difference of an estimate d,(k) of o(k). This concept, which is similar to
the generalized filtering principle (cf. Section 7.5.1), is shown in Figure 9.3. Quantizersimplemented in

this topology will be called indirectly residue-compensated A quantizers.
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o(k) (1ysit@| do(k) — de(k)

1/Kpac2 ™ 1/H1(f)

Residue Quantizer Residue Filter

A L oop Quantizer

g9(k) e(k) N-Bit@2” dk) S dg(k)
Iy Hy(f) Hy(f) 1/Kpac
B First-Stage Second-Stage

Feedback DAC
f(k) N-Bit@2"
Kpac:

Figure 9.3: Indirectly residue-compensated AY. quantizer.

9.21 Analysisand Performance Evaluation

The quantization d, (k) of o(k) will be associated with an error signal (say, y,(k))

P CRSAL

(9.5)
Kpace
Hence, the estimate d, (k) of e(k) can be expressed as
de(k) = hi (k) *do(k)
T (R) % (olk) + go(k))
Kpacs
T (B) (k) % (k) + yo(k))
Kpacs
o elh) [ (B (k) = 1) (k) + o (K) x (k)
~ Kpace - Kpacz (96)

Thefirst term in Equation (9.6) corresponds to k) _jn Equation (9.3), which was found to cause only

Kpac2

the nondominating gain error e(k)(1 — ggigf ) indy (k). The second term in Equation (9.6) corresponds

to % in Equation (9.3), and it is, therefore, concluded that indirectly residue-compensated AY
quantizers are optimally designed when the feedback DAC’s error signal m (k) dominates

1

yk) = [ (k) « hu(k) — 1 e(k) + B (K) * yo(k)

= ymatch(k) + yquan(k) (97)
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In Equation (9.7), the first error term ymatch (k) = [Eil(k) « hi(k) — 1] * e(k) is caused by mismatch
of the analog/digital filters, whereas the second error term yyan (k) = ﬁ;_l(k) * Yo (k) is caused by the

residue quantizer’s nonlinearity. The two terms will be considered separately.

9.2.2 Controlling the Residue-Quantization Error

If the residue quantizer is a data quantizer, then y,(k) will be a harmonic distortion of o(k). Because
o(k) isa“non-tonal” wide-band signal, y,(k) will be a white-noise-like error signal. Hence, assuming
that 1/H,(f) isa Nth order differentiation, the signal-band power of y,an (k) can be estimated using
Figure 4.11.

For example, if 1/H,(f) is afirst-order differentiation, the signal-band power of .. (k) will be ap-
proximately 25 dB below the Nyquist-band power of (k) (at 10 times oversampling). In genera, the
Nyquist-band power of y, (k) can be made at least 50 to 60 dB below full scale of o(k), which, for a5-bit
loop quantizer, aready will be about 20 dB below full-scale of g(k). In other words, it can easily be
assured that the Nyquist-band power of 1, (k) isin the order of —70 dBFSto —80 dBFS. In conclusion,
if the residue quantizer isjust 8 to 10 bit linea® and 1/H, (f) is afirst-order differentiation, the signal-
band power of yquan (k) Will be approximately —95 to —105 dBFS (at OSR = 10, and when using a
5-bit loop quantizer).

If 1/H,(f) is(say) asecond-order differentiation, y, (k) will be suppressed by an extra12 dB (at OSR =

10), but since the magnitude of o(k) will increase, the overall improvement is only in the order of 6 dB.

Figure 9.4 shows the performance obtained (by simulation) when the residue quantizer is a 10-bit data
quantizer. The dlight tonality is due to idle tones in e(k), but they can be avoided by dithering the AX
quantizer. The resolution of d, (k) is high (13 bit), which is reflected by the low Nyquist-band power of
Yquan (k), but it is dominated by the feedback DAC's error signal.

Using a Delta-Sigma Quantizer asthe Residue Quantizer. Alternatively, the residue quantizer can

be designed asa A quantizer. Then, theresolution of d,(k) need not be as high as 8 nor 10 bits because

®Both the resolution and the linearity must be 8 to 10 bits.
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Figure 9.4 Performance of the indirectly residue-compensated AY: quantizer when the residue quantizer

isa10-bit data quantizer.

the truncation error 72 (k) = o(k) —d, (k) Kpace = yo(k) will be at least first-order shaped, and because
1/H,(f) will provide additional signal-band suppression of (k).

The simplest option is to design the residue quantizer as a first-order AY. quantizer, e.g., as shown in
Figure 9.5. The two loop quantizers resolving ranges overlap by 1 bit, hence the resolution of the
output signal d, (k) is 9 bit. To illustrate the option (which is an important one, because it often makes
the circuit significantly simpler to implement®), the loop filter's first stage is designed to be delaying.
Consequently, because the residue filter must be causal’, d(k) is delayed to aign d(k) and d, (k) time
wise?,

The main A quantizer's second loop filter stage can be of amost any order, but it should usually be

designed with amodest NTF,,,, value to prevent o(k) from attaining large values.

Timing issues become less of a concern because the delay “breaks’ the row of sequential operations (the general pipeline
technique/ided). It is often preferable if the loop filter's first stage delays e(k) by only one half clock cycle, because then, the

two loop quantizers can be implemented using only one multiplexed flash quantizer (as suggested in a previous example).
"The residue filter cannot be made to implement 1;311
8This“trick” is also used when the residue quantizer is a pipeline quantizer.

There are, however, several design aspects in addition to that of preventing large values of o(k). Sometimes, higher

=z-—1.
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Figure 9.5: Indirectly residue-compensated AY quantizer for which the residue quantizer is a 5-bit

first-order A3 quantizer.
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Simulation Results. Figure 9.6 shows the performance obtained (by simulation) when the main AX
quantizer’s loop filter is of second order with NTR,,.x = 1.5. It can be observed that this system is not
optimally designed because yquan (k) dominates the DAC's error signal. This is because the resolution
of dy(k) isonly 9 bits, and because the truncation error is only second-order shaped (furthermore, the

residue quantizer had to be dithered to avoid idle tones.

f/S/ Output Signal

50+ o S 50+

Yquan (k)

-100} =100+t

~-150 — - -150 — ’

107 10 10 10 10 10

(a) Spectral power density versus frequency (b) Signal-band power versus JOSR

Figure 9.6: Performance of the indirectly residue-compensated A quantizer shown in Figure 9.5.

To improve the signal-band performance, the system was also simulated for a design where the residue
quantizer is a AY quantizer with a second-order loop filter. The loop filter was designed with a high
NTFnax Value (amost 4), and it was designed to resonate at a high signal-band frequency° to efficiently

reduce the signal-band power of the residue quantizer’s truncation error. The performance obtained (by
simulation) from this system is shown in Figure 9.7. Now, the signal-band performance is dominated
by the DAC's error signal (optimal design), but the error signal’s Nyquist-band power is still fairly large

due to the “low” resolution of d,(k) and to the aggressive design of the residue quantizer’s loop filter.

NTFmax values will be chosen (even as high as 4 or 6) to reduce the gain error's e(k)(1 — ﬁg—:gf) signal-band power by
shaping e(k) efficiently (cf. Equation 9.3). The tradeoff is that the residue quantizer must have a larger resolving range, in
which case it makes good sense to design the residue quantizer as an indirectly residue-compensated AY. quantizer (recursive
use).

1M ore precisely, the loop filter was designed according to Figure 4.4, where 1 = 0.0736.



9.2. INDIRECTLY RESIDUE-COMPENSATED DELTA-SIGMA QUANTIZERS 243

If desired, the error signal can be reduced further by designing the residue quantizer as an indirectly
residue-compensated AY. quantizer employing asimple low-resolution (say, 6 bit) data quantizer for the

estimation of 4 (k) (in which case the residue quantizer need only employ afirst-order loop filter).

/Sf Output Signal

-50f e REE -50f

-100} SR - -100f
-150 Mﬁ_l ', —150= = "
10 10 10 10 10 10
(a) Spectral power density versus frequency (b) Signal-band power versus /JOSR

Figure 9.7 Performance of theindirectly residue-compensated AY: quantizer shownin Figure 9.5, where

the residue quantizer is designed with an aggressive second-order filter.

Loop Filter Topology. Not all loop filters H(f) can be sectioned in two terms H,(f) and Hs(f) as
shownin Figure 9.3, where H ( f) isanintegrator. Now referring to Figure 4.4, the considered separation
can be performed only if v, = 0, i.e,, if the first biquad is designed to not resonate (which implies that

the quantizer’s noise transfer function will have at least one zero at dc —two if the filter's order is even).

If the indirectly residue-compensated A quantizer is designed to have a bandpass characteristic, then
H,(f) should be the first (resonating) biquad. It isimportant that e(k) is the only input to H (f), i.e.,
that the AY: quantizer’s stability is assured by means of the shown feed-forward branches o, ao, as, g,

rather than the feedback branches that are often used.

The above comments, of course, also apply to SE-MS DACs implemented according to the generalized

filtering principle.
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9.2.3 Contralling the Filter-Mismatch-Induced Error

Residue-compensated AY. quantizers implemented in the MASH topology are extremely sensitive to
filter-mismatch-induced errors, which often limits the performance considerably (cf. Section 4.2.1). An
important advantage of the proposed indirectly residue-compensated A quantizers (cf. Figure 9.3) is

that they are much more robust with respect to such errors. The following discussion will analyze this

aspect.

Calculating the Error’s Spectral Composition. The filter-mismatch-induced error yy,a:cn (k) was

found to be (cf. Equation (9.7))
Ymateh (K) = [ (k) % ha (k) — 1] % e(k) (9.9)

where ﬁrl(k) and hy (k) are the impulse responses of 1/f/1\1(f) and H,(f), respectively. In other
words, ymatcn (k) can be considered as being generated by filtering e(k) with the filter

Hmaten(f) = (Hl(f ) _ 1) (9.9)

Hi(f)

The spectral composition of e(k) will be modeled as a white-noise signaf' (k) < Q(f) filtered by
the AY quantizer’s noise transfer function NTF(f) = m Hence, the spectral composition of

Ymatch (k) <> Ymaten (f) can be calculated from

Yinatet (f) = Hmaten (f) - NTF(f) - Q(f) (9.10)

Equation (9.10) showsthat the loop quantizer’s truncation error ¢ (k) will be suppressed by both Hy,atcn (f)
and NTF(f); Hmatcn (f) expresses suppression due to the residue-compensation process, whereas NTF( f)

expresses suppression obtained by noise shaping.

MAs discussed in Section 4.1.1, the white-noise assumption for g(k) can be hard to justify. However, since the validity of
this discussion does not depend on the (lack of) autocorrelation of g(k), the model has been allowed for simplicity. If the

multi-bit AX quantizer is dithered, the model isfully justifiable.
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Estimation of the Mismatch Factor Hyaten(f). When Hy(f) isasimplefilter function, Hiyaien(f)
can be estimated qualitatively. The following discussion will consider the typical case where H(f)

nominally is a first-order integrator, i.e., }/1\1( f) = # (it isirrelevant whether or not the integrator

delays e(k)).

The transfer function of a switched-capacitor integrator based on alinear opamp with finite-gain is[29]

1
H=—" 9.11
e e T (9.12)
where p isthe reciprocal of the opamp’s gain (i istypically in the range from —40 to —100 dB).
Hpaten (f) can then be calculated from
1—z1
Hmagen(f) = T—(—pa1 1
o l=zt =14+ (1 —p)t
N 1—(1—p)zt
-1
—pz
S ol — 12
1—(1—p)zt (012)

The frequency response (magnitude) of H,,:n(f) 1S shown in Figure 9.8 for aselect set of 1 values. It
can be observed that H,,,,¢c, (f) is afirst-order low-pass filter with 0 dB gain at 0 Hz and approximately
—6 dB + 201og,, (1) dB gain at the Nyquist frequency.

When using this estimate to evaluate the expression for Y,.icn(f) in Equation (9.10), the following

observations can be made:

e For afirst-order AY. quantizer with NTF(f) = (1 — 2z~ 1), the frequency dependence of the two
transfer functions Hy,a¢cn(f) @nd NTF(f) will cancel amost perfectly, i.e, Yaten (f) = pQ(f).
Thus, Yiaten (f) will be asmall white-noise-like error signal for which the Nyquist-band power is

inversely proportional to the loop quantizer’s resolution and the opamp gain.
Simulations show that to obtain 100 dB performance at OSR = 10, the opamp gain must be at

least 91 dB — N - 6 dB, where N isthe loop quantizer's resolution.

e If theopamp gainislow, i.e, if thefilters H; (f) and 1/1/{\1 (f) match poorly, the loop filter's order
and/or NTF,,,x value can be increased to suppress Yiatch (f) by means of NTF(f). As discussed
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Figure 9.8: The magnitude response of H.:.n(f) When H,(f) is a first-order integration. p is the
integration’s relative “leakage”.

on page 243, NTF(f) will (for baseband systems) always have a zero at 0 Hz. This zero will
cancel the polein Hy¢ch (f), and the remaining poles and zeroes in NTF(f) will characterize the
spectral composition of Yinatcn (f). If, for example, NTF(f) is of second order, Y aten (f) Will be
first-order shaped. Some important details are discussed below.

Evaluation. Thefilter-mismatch-induced error signal ymatch (k) Will only rarely be a problem because
it is a white-noise signal ¢(k) filtered by a blocking filter NTF(f)Huyaten (f), 1-€., the high-pass filter
NTF(f) isfollowed by the low-pass filter H,a¢cn(f)-

The error signal ymatcn (k) can be suppressed in many ways. Because the power of ¢(k) is proportional
to the loop quantizer’s resolution, the attenuation required of the blocking filter NTF(f) Hyaten(f) iS
reduced as the resolution of d(k) isincreased. For example, by increasing theloop quantizer’s resolution

from 1 to 5 bits, the attenuation required from NTF( f) Hyaten (f) is reduced by 24 dB.

The low-pass filter's Hyaten (f) frequency response depends on stochastic processes, and it cannot be

designed directly. However, the filter's maximum gain is always 0 dB, and the cutoff frequency and the
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stop-band attenuation are functions of only the opamp gain. Usually it is possible to worst-case evaluate
an opamp gain, hence the frequency response Hy,.:cn(f) can be worst-case evaluated as well (using

Figure 9.8).

When the loop quantizer’s resol ution and the worst-case response of H,,¢cn(f) iSknown, the AY quan-

tizer's noise transfer function NTF(f) should be designed such that the feedback DAC's error signa
m(k) will dominate y,atcn (k). If the opamp gain is reasonable high, there is usualy no problem at al.
Table 9.1 shows the opamp gain required to obtain 100 dB performance at OSR = 10 when using a
5-bit loop quantizer and when the loop filter is of reasonable low order. It can be observed that almost
any loop filter can be used if the opamp gain is only 60 dB or higher. It can also be observed that even

very-low-gain opamps can be used if the loop filter's order and NTF,,,. value are increased!?.

Opamp Gain First Order Second Order Third Order Fourth Order
NTFphax = 1.5 65 dB 60 dB 59 dB 58 dB
NTFpLax = 2.0 61 dB 53 dB 48 dB 42 dB
NTFpLax = 2.5 50 dB 44 dB 35 dB
NTFyhax = 3.0 48 dB 40 dB 31 dB
NTFpax = 3.5 47 dB 38 dB 28 dB
NTFpLax = 4.0 46 dB 37 dB 25 dB

Table 9.1: Opamp gain required to suppress the signal-band (OSR = 10) power of the filter-mismatch
induced error ymatch (k) to —100 dBFS (5-bit loop quantizer). The suppression is proportiona to the

opamp gain and the loop quantizer’s resolution.

2If the loop quantizer is a single-bit device, the NTF.. value must be as low as 1.5 to preserve stability. In that case, to
obtain the target performance, the opamp must have a gain of at least 85 dB for any order of the loop filter (because noise
shaping is not efficient for frequencies higher than £, /20 when NTF,ax = 1.5). Thiswill usually not pose a problem, which
reflects that this topology is superior to the MASH topology.
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9.24 Designing Residue-Compensated Delta-Sigma Quantizers

Residue-compensated quantizers are best implemented in the topology shown in Figure 9.3. The reso-
lution of the output d, (k) should preferably be fairly high (say, 8 to 10 bits or more) to avoid that d, (k)

includes high-order shaped error signals (to avoid a requirement for complex digita filters). For thisand
several other reasons, the loop quantizer’s resolution should not be too low — 4 to 5 bits seemsto be a

good choice.

Designing the Loop Filter. To avoid dominating filter-mismatch errors, the loop filter's first stage
should be simple. Since H;(f) = 1 usually is not practical'®; a first-order integrator is the preferred
choice for baseband quantizers. If the opamp gain is sufficiently high (cf. Table 9.1), filter-mismatch
errors need not be considered when designing the loop filter’s second stage. The loop filter H (f)Hz(f)
should instead be designed such that the gain-mismatch error e(k) (1 —gg—igf) issufficiently suppressed.
The factor (1 — %) can usualy be made small (say, —50 to —60 dB). Since the power of e(k) is

DAC1

13|t may not be the simplest option, but very good systems can indeed be designed if e(k) is reconstructed and quantized by

the residue quantizer. This option isillustrated below. The main reconstruction DAC (DAC3) takes the place of the main AX

quantizer's feedback DAC (DACL) as the system’s most critical element. Hence, DAC3 and possibly also DAC2 should be

mismatch-shaping, whereas DAC1 need not be mismatch-shaping. A key point isthat Kpacs need not match Kpaci perfectly

because mismatch will cause an error which is proportional to g(k) (alinear error). The topology is particularly useful for
-1

bandpass quantizers, where designing H: (f) = == Mmay be associated with an intolerable large filter-mismatch-induced

error. Hence, on occasion, the circuit’s higher complexity may be well worth while.

Residue Quantizer

g(k)

Kpaci J
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inversely proportional to the loop quantizer’s resolution, it is usually sufficient that NTF(f) suppresses
q(k) (in the signal-band) by as little as 20 to 30 dB when using a 5-bit loop quantizer. This can be
obtained with asecond order loop filter. If the loop quantizer’s resolution islow, and/or if (1 —gg—ﬁgf) is
considerably higher than —50 dB, the loop filter should be of higher (say, third or fourth) order and the
NTFax Value should be increased (to say, 3 or 4), in which case the residue quantizer must be designed

with awider resolving range.

Designing the Residue Quantizer. The residue quantizer’'s step size must be small enough to assure
that d4(k) has the required resolution. For example, to obtain 9-bit resolution of ¢, (k) when using a
5-bit loop quantizer, the resolution of d,(k) must be at least 5 bits. If the loop filter H,(f)Hy(f) is
designed with ahigh NTF,,., value, the resolution of d, (k) must be higher.

Considering that 1/H,(f) is a first-order high-pass filter, o(k) cannot be quantized directly (with a
data quantizer) to the discussed minimum resolution of d,(k). If that is done, the residue quantizer's
truncation error will cause adominating error in d, (k). This problem can be avoided either by increasing
the resolution of d,(k) using a higher-resolution data quantizer or by shaping the truncation error by

using a AX. quantizer.

If the residue quantizer is designed as a data quantizer, the truncation error will be suppressed by only
about 24 dB (at OSR = 10, cf. Figure 4.11), hence the resolution of d,(k) must be at least 12 bits.
Hence, if the loop quantizer’s resolution is (say) 5 bits, the residue quantizer’s resolution must be at least
8 or 9 hits. The residue quantizer can, for example, be implemented as a pipeline quantizer, in which

case d(k) must be delayed accordingly beforeit isadded to ¢. (k) (cf. Figure 9.5).

If the residue quantizer is designed as a AY. quantizer, the truncation error can be efficiently shaped,
and the resolution of d,(k) can be as low as the discussed minimum. If the resolution of d(k) and
d, (k) are both 5 bits, the residue quantizer should be of at least second order (see Figures 9.6 and 9.7).
A better/simpler option is to design the residue quantizer as an indirectly residue-compensated AX
quantizer with afirst-order loop filter and with a low-resolution data quantizer as the (internal) residue

quantizer.

1A simple design would use a second-order main loop filter, a 4-bit loop quantizer for d(k), and generate d, (k) as a 4-bit
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Timing the System. An important advantage of indirectly residue-compensated AY. quantizersis that
they can easily be pipelined — simply by making H; (f) delaying by one half of afull clock cycle. An
example was shown in Figure 9.5, but the concept can be generalized and used throughout the structure

(thisis especialy convenient when the residue quantizer incorporates a pipeline data quantizer).

Conclusion. The conclusion is good. Very robust high-performance signal quantizers can be imple-
mented in the described topologies, and the circuit complexity is modest. Many variations are possible;

the topology can betailored to suit amost any need.

9.3 Continuous-Time Delta-Sigma Quantizers

As discussed in Section 4.5.2, continuous-time AY. quantizers can be designed to yield a better per-
formance than their discrete-time counterparts. However, they are generally more difficult to design
because dynamic errors and circuit timing are tricky issues. This section will consider some of the new
and interesting design options that are available when using the techniques described in this chapter and

in Chapter 8.

9.3.1 High-Resolution Continuous-Time Delta-Sigma Quantizers

Consider Figure 4.19. As discussed above, e(t) should preferably be made as small as possible. There
is, however, alimit to how small e(t) can be made, and this limit isindependent of how well the system
is designed. The problem is that the feedback signal f,(¢) is constant for an entire clock cycle, whereas

the input signal ¢(t) varies continuously. If g(¢) isonly 10 times oversampled, e(¢) may attain values

noise-shaped representation of o(k), which is compensated with a 4-bit-differentiated (which resultsin a 5-bit) representation
of the truncation. This way, the resolution of dy (k) will be around 10 bits, and the errors will al be small and second-
order shaped. The main feedback DAC must (of course) be second-order mismatch-shaping, but the residue quantizer need
only employ a first-order mismatch-shaping feedback DAC. In fact, the residue quantizer’'s feedback DAC may not need to
be mismatch-shaping because o(k) is small, and al errors (including the DAC error) in d, (k) will be first-order shaped by
1/Hi(f).
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that are as large as one third of full scale; absolutely nothing can be done to prevent that. Thisis not
even the worst case because ¢(t) may not have been processed by an anti-aliasing filter (this option was
emphasized as an advantage of CT AY. quantizers), hence the “ sample-to-sample’ variation of g(¢) may

be substantial.

To understand the complexity of designing high-resolution CT AY quantizers, it should be observed
that the feedback DAC usually will be delaying, partly because the spectral encoder will cause delay,
and partly because it may be necessary to employ a delaying switching scheme to prevent dynamic
DAC errors (cf. Chapter 5 and Figure 5.2). Hence, to minimize the magnitude of e(t), it is necessary
to look ahead in time and estimate the median of g(¢) for the next sample. Thisis not simple to do
because CT analog delay lines can be implemented only as analog all-pass filters with a constant group
delay. In other words, the pipeline technique discussed in Chapter 8 is not directly applicable for CT

AY. quantizers.

Predictive Quantizers. Figure 9.9 shows an interesting option which can be used to obtain an output

signal d(k) of higher resolution than the loop quantizer’s resolutior®.

************************ | L oop Quantizer

DT/CT < N-bit@1 do (k)
Zero-Order [—
Holding Kpac

Predictive

t 3 3
fh( ) 3 DT/CT f(k) N-bit@1 3 *

| Zero-Order Koae |+

: Holding PAC :

Current-Mode DAC

Figure 9.9: Predictive continuous-time A3 quantizer.

This topology can, obviously, also be used for DT AX. quantizers, but the systems discussed in Chapter 8 are usually
preferable for that purpose.
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The basic idea is to let a predictive estimator predict the next sample as accurately as possible, and
use the loop quantizer only to estimate the prediction’s error. If the prediction (k) is accurate, the

resolution of d(k) can be vastly higher than the loop quantizer’s resol ution.

Good predictions can, however, only be made for signals that have a low relative bandwidti®. A low
bandwidth can be mimicked by omitting the AY. quantizer’s feed-forward path (the dashed line) because,

then, the loop filter will act as alow-pass filter (for a baseband quantizer).

A more sophisticated techniquet’ which can be used to improve the prediction’s accuracy isto design the
AY. quantizer with multiple feedback DACs connected to the input of each of the loop filter’s integrators
(as shown in Figure 5.8 in [1]) and not compensate for the injected signal component by omitting the
feed-forward paths from g¢(t), i.e, letting b, = 0,4 > 1 in Figures 5.9 and 5.10 in [1]*®. The purpose of

this deliberately unusual design isto assure that g(t) will reach the loop quantizer only after some delay.
By quantizing not only the loop filter's output signal, but also one or several of the loop filter's interna

state variables, a highly-accurate prediction dy(k) can be obtained (not shown).

An important aspect to consider for predictive AY. quantizers® isthat the predictive process potentially
can become unstable (or never even stabilize), in which case the AY. quantizer will malfunction. To
prevent this scenario, the loop quantizer can be designed to have a wide resolving range with a large
step size (to assure the stability even if the error in dy(k) is large) and combine it with a smaller re-
solving range?® with a smaller step size (to obtain high performance once the predictive process has
converged/stabilized). Many variations/improvements are possible. For example, the loop quantizer can
be a high-resolution subranging quantizer, where d)(k) represents the first “quantization,” and where

the step size of the second quantization is variable and a decreasing function of a significance factor

% Thisincludes, in particular, narrow-band bandpass quantizers, where the relation d(k + 2) ~ —d(k) will hold with avery
good accuracy. Inthis case, linear prediction is adelay combined with a change of polarity.

\Which also violates the previously discussed general rulesfor how to design good AY. quantizers, but that only emphasizes
how different DT and CT AX quantizers are to design.

BWhich is adirect violation of the rule outlined in [43].

Ppredictive AY quantizers are only exemplified by Figure 9.9. This class of quantizers is generalized by alowing the
prediction do (k) to be based on other and more information than just d(k).

PCentered around zero.
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that reflects the reliability of dy(k) (asmall digital state machine is required for this purpose). Another
interesting option isto use asimple linear prediction (for example dy(k + 1) = 0, do(k + 1) = d(k), or
do(k + 1) = 2d(k) — d(k — 1)) and design the loop quantizer with logarithmically-spaced quantization
levels??, in which case the quantizer’s SER performance will be approximately constant for awide range

of input signals (because the error in dy (k) largely will be proportional to the magnitude of ¢(¢)).

9.3.2 Residue-Compensated Continuous-Time AY Quantizers

Continuous-time A3 quantizers can also be designed in the residue-compensating topology shown in
Figure 9.3, but there are some important differences when the loop filter is a continuous-time filter. The
following refersto aCT equivalent of Figure 9.3, i.e., replace thetime variable & by ¢ and insert aholding

DT/CT converter at the output of the feedback DAC.

The Residue Quantizer’s Resolving Range. The fundamental operation of the CT A quantizer is
that it generates asigna f3,(¢) which has approximately the same spectral composition astheinput signal
g(t). Because f;,(t) isastaircase signal (cf. Figure 2.1), whereas g(t) is a continuous signal, it will not
be possible to null the difference e(t). The loop filter will emphasize the signal band in which e(t) will

be minimized as much as possible.

Because the feedback path generally is delaying, g(t) and f,(¢) will be out of phase. Hence, e(t) will
represent not only the truncation error (from the loop quantizer), but also a signal component which is
linearly related to g(¢). The magnitude of this signal component will at besf? be proportional to the sig-
nal frequency and the feedback delay?®. If H, (f) isafirst-order integrator, it follows that the magnitude
of o(t) is proportiona to the feedback delay ¢; only. In other words, to minimize the magnitude of o(t),

21 e, such that the loop quantizer's step size is a decreasing function of the accuracy of do(k). This way, highly-accurate
estimates (which are expected for low-level input signals g(¢)) will not be subject to significant truncation error, whereas poor

estimates (which are expected only for full-scale input signals g(t¢)) will be subject to alarger truncation error.

2| e. if the feed-forward path isimplemented, whereby the delay ¢, of f5,(t) is minimized. Notice that the delay ¢, should
be evaluated as the feedback path’s delay plus half aclock cycle (cf. Figure 2.1).

%The magnitude of e(t) = sin(2xft) — sin(2nf(t — t4)) is 1/2(1 — cos(27 ft4)), which is approximately 2z ft4 for
2w ftq < 1. Hence, the magnitude of e(t) is proportional to the signal frequency and the feedback delay.
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it is necessary to use aloop quantizer with a small step size and to minimize the feedback path’s delay

as much as possible.

To minimize the residue quantizer’s resolving range, it is preferable to compensate for the signal com-
ponent in o(t). This can be performed as shown in Figure 9.10. Assume that the loop quantizer's delay
is referred to the feedback DAC which is described by adelay of ¢; > T,/2. Assuming that H,(f) isa

first-order integrator with the time constant 7., the Fourier transformed of o, (¢) will be

019) = 2D pypyrimce e (o is)

JWTint JWTint

_ G(f) — Do(f)Kpace i@t (1 —l—_]wVTim)
JWTint JWTint
G —Jjwtd pJWYTint

- EU) — Do(f)Kpac V1 + (wyTint)? (—e — )
JWTint JWTint

— G(f) . DO('f)KDAC ( /1 + (w'YTint)Q ejw(’YTint*td)) (913)
JWTint JWTing

Equation (9.13) shows that, if the delay-compensation DAC's gain yKpac is adjusted such the ¢; =
vy7int, the signal component in oy (¢) will be efficiently canceled in the frequency band for which wy 7, =
2m fyrmine < 1. If the delay ¢, is reasonable (less than T;) and if the system is oversampled 10 times or
more, the compensation for g(¢) will be efficient in the entire signal band. The signal from the delay-
compensation DAC may be added to theinput Hs(f) (as shown for the residue quantizer), in which case

Hy(f) will process only truncation noise [43] and it may be simpler to stabilize the modulator.

The signal component in o(t) can be compensated for in other ways, but the shown technique is believed

to be the simplest.

To increase the resolution of d(k), the main AY quantizer can, for example, be designed with a pre-
dictive loop quantizer as shown in Figure 9.9 (with the feed-forward path). The residue quantizer's
feed-forward path (the dashed line) should, however, in many cases not be implemented (based on anti-

aliasing concerns).

The Residue Filter. The residue filter is a discrete-time filter, whereas the linear system which it is

to match is a continuous-time one. The sense in which they are to match will now be defined. The
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Figure 9.10: Continuous-time residue-compensated AY. quantizer which is compensated for the feed-

back path’s delay.



256 CHAPTER 9. RESIDUE-COMPENSATED DELTA-SIGMA QUANTIZERS

compensation logic is assumed to generate d(k) according to therule

d(k) = hmain(k) * do(k) + hres(k) * d1 (k) (9.14)

where hpain (k) and hpes (k) aretheimpul se responses of two filters Hyain (z) and Hyes(z) Where Hyes(z)
is the residue filter). Generally, Hy,,in(2) Will be a smple delay, but the technique discussed in the
following can also be used in situations when this is not the case (it can aso be used for the design of

discrete-time residue-compensated A quantizers).

It is a fundamental observation that Av..s(k) * d; (k) should compensate for quantization errors as well
as any other variation in hy,in (k) * do(k). Hence, once the entire system except the residue filter is de-
signed, hyes(k) can be determined simply by letting g(¢) = 0 whileforcing d (%) to be an digital impluse
signal: 1,0,0,0,... . When the response d; (k) is know (for example obtained through simulations) it
isasimple (linear programming) task to find the coefficients of h.s(k) for which d(k) in Equation 9.14
is zero for al k. A solution can always be found, provided that H,.in(z) delays sufficiently (causality

problem).

Aliasing Errors. An important advantage of CT AX. quantizers is that a separate anti-aliasing filter
may not be necessary. The key point is that the loop filter suppresses the aiasing that occurs in the loop

guantizer's sampling process.

The situation is, however, dightly different for residue-compensated AXY quantizers. All errors from
the quantizer, including aliasing errors, will be suppressed by Hyach (f)NTF(f) (cf. Section 9.2.2);

hence, if the residue filter matches the continuous-time system well (in the sense discussed above), the
suppression of aliasing errors does not at al depend on the loop filter. This may sound great, but the
pitfall is that a large aliasing error may occur if o(t) is sampled at the residue quantizer’s input. This
error issuppressed by 1/H;(f) only —not by NTF(f). Since H, (f) usually is alow-order filter (in the
worst case o(t) = e(t)), it is generally not acceptable to sample o(t) directly, i.e., the residue quantizer

should be designed as a (possibly residue-compensated) CT A quantizer.
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9.3.3 Conclusions

The proposed type of residue-compensated AY quantizers combine the advantages of A quantizers
(high resolution) and pipeline quantizers (simplicity and speed) in an advantageous way. Unlike the

well-known MASH quantizers, they do not rely critically on accurate matching of transfer functions.

Continuous-time AXY quantizers are more difficult to design than their discrete-time counterparts, but
their better noise performance and the possible omission of a seperate anti-aliasing filter more than
compensates for the difficulty. The prospective low power consumption and the good robustness with
respect to substrate-coupled noise are other important advantages of CT AX quantizers; it isthe authors
belief that they will be used widely in the foreseeable future.

Although several useful techniques for the implementation of high-resolution CT AY. quantizers have
been proposed (cf. Section 9.3.1), it is concluded that high-performance low-oversampled CT AY. quan-
tizers are best implemented as residue-compensated systems. For CT AX. quantizers, it may not be
imperative to use very low oversampling ratios because CT circuits can be designed to be very fast. A
high sampling frequency will mainly affect the digital circuitry, which, soon enough, will turn out to be
alimiting factor. Hence, the OSR should be kept moderate if not aslow as 10 (at 30 times oversampling,

simple first-order mismatch-shaping DACs can provide 100 dB performance).

Continuous-time circuitry is characterized by on-chip-defined time constants, which must be designed
with respect to the sampling frequency. To preserve closed-loop stability and to achieve the desired
performance, it may be necessary to design a simple master circuit that monitors and controls these
time constants; thistechnique is frequently used in various monolithic CT circuits, such as, for example,

transconductance-capacitance g, C filters.
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Chapter 10

Conclusion

Oversampled data conversion is a convenient way to overcome the constraints that are posed by the
imperfections and inaccuracies that are inherent in CMOS technology. A delta-sigma (AX) data con-
verter's linearity is constrained mainly by the linearity of an internally employed digital-to-analog con-
verter (DAC). Consequently, because time-invariant single-bit DACs are inherently linear, single-bit A

converters can have a superb linearity independent of mismatch errors.

The achievable bandwidth of single-bit AY: convertersis, however, limited because single-bit signal rep-
resentation requires a high degree of oversampling. To increase the AY. converter’s bandwidth without
increasing the sampling frequency or degrading the performance, i.e.,, to lower the oversampling ratio,
multi-bit signal representation is imperative. Mismatch-shaping DACs mark a breakthrough because
they facilitate the linear multi-bit D/A conversion required for the implementation of high-performance,
low-oversampled, wide-bandwidth A3 converters. The state-of-the-art unit-element mismatch-shaping
(UE-MYS) DACs suffer two main limitations: their complexity is proportional to their resolution ex-
pressed in levels, and they require 25 times oversampling to suppress mismatch errors by 40 dB, which
is generally required (cf. Figure 4.17). In other words, circuit complexity constrains the signal repre-
sentation’s resolution to be only afew bits, and the moderately efficient suppression of mismatch-error

constrains the data converter’s oversampling ratio and bandwidth.

259
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High-Resolution Mismatch-Shaping D/A Converters. Inan attempt to improve the tradeoff between
performance, cost, and power consumption, this study has focused on the design of high-resolution
mismatch-shaping DACs. A major contribution of this work is the development of scaled-element
mismatch-shaping (SE-MS) DACs, which are characterized by a low circuit complexity which is only
linearly related to the resolution expressed in bits. Because the circuit complexity islow, especially when
the so-called filtering principle is used, the signal representation’s resolution can be chosen to be so high
that the truncation error will be dominated by mismatch errors (10-bit resolution istypical). When using
a high-resolution signal representation, the specification of the filters that are normally used to suppress
out-of-band errors can be relaxed. Another important advantage of high-resolution signal representation

isthe generally reduced sensitivity to clock jitter.

To increase the bandwidth, the oversampling ratio must be reduced. However, even in the absence of
mismatch errors, high-performance data converters will require a minimum degree of oversampling.
Thermal noise, clock-jitter-induced errors, complexity of anti-aliasing filters, etc., are all good reasons
why it generally is impractical to reduce the oversampling ratio to less than about 10. Consequently,
the target performance, 100 dB for a 0.1% full-scale matching index, was defined for an oversampling
ratio of 10. It was shown that to meet this specification the proposed SE-MS DACs cannot be based
on the direct use of the filtering principle and an array of UE-M S DACs (because UE-M S DACs do not
suppress the mismatch errors sufficiently). To meet the performance requirements, the filtering principle
had to be generalized to include the combined use of UE-MS DACs and analog filters. This generalized
filtering principle facilitates the implementation of low-complexity DACswith the target bandwidth and

performance.

High-Resolution Quantizers. High-performance AY. quantizers can be implemented using a SE-MS
DAC as the main feedback stage. However, it is not trivial to increase the signal representation’s reso-
lution to the level where the truncation error is dominated by the DAC’s mismatch error. The problem
arises because the internal loop quantizer may introduce only less than one clock cycle of delay, which
for high-speed operation implies that the loop quantizer must be implemented as a flash quantizer with

the full resolution. Hence, to avoid high circuit complexity, the signal representation’s resolution will
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generally be chosen as 6 bits or less. This need not be a problem because the target performance can be

obtained if the loop filter is of sufficiently high order.

A pipeline technique was proposed as a way to obtain high-resolution signal representation without
compromising the bandwidth or using complex circuitry. The underlying principle is based on the ob-
servation that the AY quantizer’s feedback signal will be approximately the same as the input signdl if
the signal transfer function is unity. Hence, if an analog delay line is used to delay the input signal, an
estimate of the input signal can be obtained before it is applied to the AY. quantizer, in which case the
loop quantizer need find only the estimate’s residue. This way, the feedback signal can have a higher
resolution than the loop quantizer. The analog delay line can be designed using only simple circuitry

and without significantly degrading the performance.

A high-resolution signal representation can be obtained even if the AX quantizer operates internally
with acoarsely truncated feedback signal. The so-called MASH quantizers estimate the loop quantizer’'s
truncation error, and they process this estimate in an attempt to compensate for the AY. quantizer's
truncation error. By compensating for the AY quantizer's truncation error, a high-resolution output
signal can be obtained (cf. Figure 4.5). MASH quantizers are, however, known to be very sensitive
to the mismatch of analog and digital filters, which may cause a substantial difference between the
AY. quantizer’s truncation error and the estimate made thereof. To improve the accuracy by which the
truncation error can be estimated and compensated for, the truncation error should be estimated either
directly or after only minimal processing. For example, it was shown that a very robust operation can
be obtained if the truncation error is estimated on the basis of the output from the loop filter's first
integrator stage. The technique is so robust that it can be used successfully in combination with single-
bit AY modulators. It is, however, much preferable to use a multi-bit AY. quantizer because in this
case the truncation error can be made small and the cancellation process even more robust. This type of
guantizer is characterized by many advantages. low circuit complexity, good robustness, high-resolution

signal representation, and alow oversampling ratio.

Concluding Comments. This work facilitates the implementation of oversampled data converters

with an unpreceded positive balance between sampling frequency, signal-band and Nyquist-band perfor-
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mance, power consumption, circuit complexity, and production cost. Using standard CM OS technol ogy,
the achievable performance is mainly limited by device noise, clock jitter, and other unavoidable effects.

Hence, these data converters are the state-of-the-art.



Kort beskrivelse pa Dansk

(Brief description in Danish)

Denne afhandling omhandler hgjtydende datakonvertere der bygger pa delta-sigma princippet. Dette
princip muligger implementering af hgjoplasnings datakonvertere, der ikke forudsadter ngjagtig kontrol
eller matchning af elektriske parametre. Enkeltbit delta-sigma datakonvertere har igennem de sidste
10-15 a&r vundet store markedsandele; primaat pa audio og andre lavfrekvens omrader, da deres relative

bandbredde er forholdsvis lille (i sterrelsorden 1/100 af Nyquist bandbredden).

Flerbit delta-sigma datakonvertere er analyseret med henblik pa at opna en starre relativ bandbredde.
Sagens kerne ligger i implementeringen af flerbit digital-til-analog (D/A) konvertere, der uanset deres
interne oplasning skal vage ligesa linesae som det samlede system. Hovedelementet i dette arbejde er
udviklingen og beskrivelsen af en ny type D/A konvertere der opfylder dette krav, og som kan imple-
menteresi billige CMOSteknologier hvor den relative kontrol af elektriske parametre ikke kan forventes
at vare bedre end 0.1%. Disse D/A konvertere er baseret paen digital tilstandsmaskine, der kontrollerer
et antal skalerede analoge kilder. Princippet muligger implementering af datakonvertere med omkring
100 dB linearitet ved en bandbredde paen 1/10 af Nyquist bandbredden. Da denne bandbredde ikke kan
foreges naevnevaadigt uden at stille upraktisk store krav til andre systemaspekter (sasom stgj, clock
jitter, frekvensrespons, med videre), konkluderes det at den opnalige ydelse er omtrent optimal for
hgjoplasnings datakonvertere. Det er bemaakelsesvaadigt at disse D/A konvertere ydermere er sim-
plere at realisere end enkelthit delta-sigma D/A konvertere, og de er saledes velegnede bade til lav- og

mellemfrekvens formal samt hvor effektforbruget skal vaare lavt.
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De omtalte D/A konvertere er velegnede til brug som tilbagekobling internt i delta-sigma ana og-til-
digital (A/D) konvertere. Deres potentiale kan imidlertid ikke direkte udnyttes fuldt ud, da det generelt
er vanskeligt at kvantisere det analoge signal til en hgj oplasning uden at introducere en vis forsinkelse
(hvilket kan forarsage ustabilitet). Denne begramsning kan imidlertid omgas paflere mader. Blandt andet
er en ny og forbedret arkitektur for de velkendte kompenserende (MASH) delta-sigma A/D konvertere
foreddet. Den nye arkitektur er i praksis ikke afhaangig af matchning af overfaringsfunktioner.
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